The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one of the most promising and viable numerical tools to study particle-laden turbulent flows, when the computational cost of Direct Numerical Simulation (DNS) becomes too expensive. The applicability of this approach is however limited if the effects of the Sub-Grid Scales (SGSs) of the flow on particle dynamics are neglected. In this paper, we propose to take these effects into account by means of a Lagrangian stochastic SGS model for the equations of particle motion. The model extends to particle-laden flows the velocity-filtered density function method originally developed for reactive flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure that solves a set of Stochastic Differential Equations (SDEs) along individual particle trajectories. The resulting model is tested for the reference case of turbulent channel flow, using a hybrid algorithm in which the fluid velocity field is provided by LES and then used to advance the SDEs in time. The model consistency is assessed in the limit of particles with zero inertia, when “duplicate fields” are available from both the Eulerian LES and the Lagrangian tracking. Tests with inertial particles were performed to examine the capability of the model to capture the particle preferential concentration and near-wall segregation. Upon comparison with DNS-based statistics, our results show improved accuracy and considerably reduced errors with respect to the case in which no SGS model is used in the equations of particle motion.

1.
R. S.
Rogallo
and
P.
Moin
, “
Numerical simulation of turbulent flows
,”
Annu. Rev. Fluid Mech.
16
,
99
(
1984
).
2.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Verlag
,
2006
).
3.
M.
Lesieur
,
O.
Métais
, and
P.
Comte
,
Large-Eddy Simulations of Turbulence
(
Cambridge University Press
,
2005
).
4.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations: I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
(
1963
).
5.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
6.
M.
Germano
, “
Turbulence: The filtering approach
,”
J. Fluid Mech.
238
,
325
(
1992
).
7.
R.
Zamansky
,
I.
Vinkovic
, and
M.
Gorokhovski
, “
Acceleration in turbulent channel flow: Universalities in statistics, subgrid stochastic models and an application
,”
J. Fluid Mech.
721
,
627
(
2013
).
8.
R. O.
Fox
,
Computational Models for Turbulent Reacting Flows
(
Cambridge University Press
,
2003
).
9.
S. B.
Pope
, “
Small scales, many species and the manifold challenges of turbulent combustion
,”
Proc. Combust. Inst.
34
,
1
(
2013
).
10.
R. O.
Fox
, “
Large-eddy-simulation tools for multiphase flows
,”
Annu. Rev. Fluid Mech.
44
,
47
(
2012
).
11.
V.
Armenio
,
U.
Piomelli
, and
V.
Fiorotto
, “
Effect of the subgrid scales on particle motion
,”
Phys. Fluids
11
,
3030
(
1999
).
12.
Y.
Yamamoto
,
M.
Potthoff
,
T.
Tanaka
,
T.
Kajishima
, and
Y.
Tsuji
, “
Large-eddy simulation of turbulent gas particle flow in a vertical channel: Effect of considering inter-particle collisions
,”
J. Fluid Mech.
442
,
303
(
2001
).
13.
M.
Vance
,
K.
Squires
, and
O.
Simonin
, “
Properties of the particle velocity field in gas-solid turbulent channel flow
,”
Phys. Fluids
18
,
063302
(
2006
).
14.
C.
Dritselis
and
N.
Vlachos
, “
Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases
,”
Int. J. Multiphase Flow
37
,
706
(
2011
).
15.
M.
Afkhami
,
A.
Hassanpour
,
M.
Fairweather
, and
D.
Njobuenwu
, “
Fully coupled LES-DEM of particle interaction and agglomeration in a turbulent channel flow
,”
Comput. Chem. Eng.
78
,
248
(
2015
).
16.
J.
Kuerten
, “
Subgrid modeling in particle-laden channel flow
,”
Phys. Fluids
18
,
025108
(
2006
).
17.
C.
Marchioli
,
M.
Salvetti
, and
A.
Soldati
, “
Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows
,”
Phys. Fluids
20
,
040603
(
2008
).
18.
E.
Calzavarini
,
A.
Donini
,
V.
Lavezzo
,
C.
Marchioli
,
E.
Pitton
,
A.
Soldati
, and
F.
Toschi
, in
Direct and Large-Eddy Simulation 8
,
Ercoftac Series
, edited by
V.
Armenio
,
B.
Geurts
,
J.
Frohlich
, and
J. G. M.
Kuerten
(
Springer
,
2011
).
19.
J. R.
Fessler
,
J. D.
Kulick
, and
J. K.
Eaton
, “
Preferential concentration of heavy particles in a turbulent channel flow
,”
Phys. Fluids
6
,
3742
(
1994
).
20.
L.
Wang
and
M.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
(
1993
).
21.
D.
Rouson
and
J.
Eaton
, “
On the preferential concentration of solid particles in turbulent channel flow
,”
J. Fluid Mech.
428
,
149
(
2001
).
22.
A.
Soldati
and
C.
Marchioli
, “
Sediment transport in steady turbulent boundary layers: Potentials, limitations, and perspectives for Lagrangian tracking in DNS and LES
,”
Adv. Water Resour.
48
,
18
(
2012
).
23.
A.
Soldati
and
C.
Marchioli
, “
Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study
,”
Int. J. Multiphase Flow
35
,
827
(
2009
).
24.
M.
Picciotto
,
C.
Marchioli
, and
A.
Soldati
, “
Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers
,”
Phys. Fluids
17
,
098101
(
2005
).
25.
S.
Balachandar
and
J.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
(
2010
).
26.
C.
Marchioli
,
M. V.
Salvetti
, and
A.
Soldati
, “
Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows
,”
Acta Mech.
201
,
277
(
2008
).
27.
F.
Bianco
,
S.
Chibbaro
,
C.
Marchioli
,
M. V.
Salvetti
, and
A.
Soldati
, “
Intrinsic filtering errors of Lagrangian particle tracking in LES flow fields
,”
Phys. Fluids
24
,
045103
(
2012
).
28.
B.
Geurts
and
J.
Kuerten
, “
Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow
,”
Phys. Fluids
24
,
081702
(
2012
).
29.
S.
Chibbaro
,
C.
Marchioli
,
M. V.
Salvetti
, and
A.
Soldati
, “
Particle tracking in LES flow fields: conditional Lagrangian statistics of filtering error
,”
J. Turbul.
15
,
22
(
2014
).
30.
J.
Pozorski
and
S.
Apte
, “
Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion
,”
Int. J. Multiphase Flow
35
,
118
(
2009
).
31.
C.
Gobert
, “
Analytical assessment of models for large eddy simulation of particle laden flow
,”
J. Turbul.
11
,
1
(
2010
).
32.
B.
Shotorban
and
F.
Mashayek
, “
Modeling subgrid-scale effects on particles by approximate deconvolution
,”
Phys. Fluids
17
,
081701
(
2005
).
33.
M. J.
Cernick
,
S.
Tullis
, and
M.
Lightstone
, “
Particle subgrid scale modelling in large-eddy simulations of particle-laden turbulence
,”
J. Turbul.
16
,
101
(
2015
).
34.
W.
Michałek
,
J.
Kuerten
,
J.
Zeegers
,
R.
Liew
,
J.
Pozorski
, and
B.
Geurts
, “
A hybrid stochastic-deconvolution model for large-eddy simulation of particle-laden flow
,”
Phys. Fluids
25
,
123302
(
2013
).
35.
C.
Jin
,
I.
Potts
, and
M.
Reeks
, “
A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers
,”
Phys. Fluids
27
,
053305
(
2015
).
36.
P. J.
Colucci
,
F. A.
Jaberi
,
P.
Givi
, and
S. B.
Pope
, “
Filtered density function for large eddy simulation of turbulent reacting flows
,”
Phys. Fluids
10
,
499
(
1998
).
37.
F. A.
Jaberi
,
P. J.
Colucci
,
S.
Givi
, and
S. B.
Pope
, “
Filtered mass density function for large-eddy simulation of turbulent reacting flows
,”
J. Fluid Mech.
401
,
85
(
1999
).
38.
L. Y.
Gicquel
,
P.
Givi
,
F.
Jaberi
, and
S. B.
Pope
, “
Velocity filtered density function for large eddy simulation of turbulent flows
,”
Phys. Fluids
14
,
1196
(
2002
).
39.
M.
Sheikhi
,
T.
Drozda
,
P.
Givi
, and
S. B.
Pope
, “
Velocity-scalar filtered density function for large eddy simulation of turbulent flows
,”
Phys. Fluids
15
,
2321
(
2003
).
40.
M.
Sheikhi
,
P.
Givi
, and
S. B.
Pope
, “
Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows
,”
Phys. Fluids
19
,
095106
(
2007
).
41.
M.
Sheikhi
,
P.
Givi
, and
S. B.
Pope
, “
Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows
,”
Phys. Fluids
21
,
075102
(
2009
).
42.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
43.
J.-P.
Minier
, “
On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows
,”
Prog. Energy Combust. Sci.
50
,
1
(
2015
).
44.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids A
4
,
633
(
1992
).
45.
P.
Moin
and
J.
Kim
, “
Numerical investigation of turbulent channel flow
,”
J. Fluid Mech.
118
,
341
(
1982
).
46.
C.
Marchioli
and
A.
Soldati
, “
Mechanisms for particle transfer and segregation in a turbulent boundary layer
,”
J. Fluid Mech.
468
,
283
(
2002
).
47.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops and Particles
(
Academic Press
,
New York
,
1978
).
48.
J.-P.
Minier
and
E.
Peirano
, “
The pdf approach to turbulent polydispersed two-phase flows
,”
Phys. Rep.
352
,
1
(
2001
).
49.
J.-P.
Minier
,
E.
Peirano
, and
S.
Chibbaro
, “
PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow
,”
Phys. Fluids
16
,
2419
(
2004
).
50.
L.-P.
Wang
and
D. E.
Stock
, “
Dispersion of heavy particles by turbulent motion
,”
J. Atmos. Sci.
50
,
1897
(
1993
).
51.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1990
).
52.
J.-P.
Minier
,
S.
Chibbaro
, and
S. B.
Pope
, “
Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows
,”
Phys. Fluids
26
,
113303
(
2014
).
53.
T. D.
Dreeben
and
S. B.
Pope
, “
Probability density function/Monte Carlo simulation of near-wall turbulent flows
,”
J. Fluid Mech.
357
,
141
(
1998
).
54.
M.
Wacławczyk
,
J.
Pozorski
, and
J.-P.
Minier
, “
Probability density function computation of turbulent flows with a new near-wall model
,”
Phys. Fluids
16
,
1410
(
2004
).
55.
E.
Peirano
,
S.
Chibbaro
,
J.
Pozorski
, and
J.-P.
Minier
, “
Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows
,”
Prog. Energy Combust. Sci.
32
,
315
(
2006
).
56.
M.
Muradoglu
,
P.
Jenny
,
S. B.
Pope
, and
D. A.
Caughey
, “
A Consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows
,”
J. Comput. Phys.
154
,
342
(
1999
).
57.
P.
Jenny
,
S. B.
Pope
,
M.
Muradoglu
, and
D. A.
Caughey
, “
A hybrid algorithm for the joint PDF equation of turbulent reactive flows
,”
J. Comput. Phys.
166
,
218
(
2001
).
58.
C.
Marchioli
,
A.
Soldati
,
J.
Kuerten
,
B.
Arcen
,
A.
Taniere
,
G.
Goldensoph
,
K.
Squires
,
M.
Cargnelutti
, and
L.
Portela
, “
Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test
,”
Int. J. Multiphase Flow
34
,
879
(
2008
).
59.
J.-P.
Minier
and
J.
Pozorski
, “
Wall-boundary conditions in probability density function methods and application to a turbulent channel flow
,”
Phys. Fluids
11
,
2632
(
1999
).
60.
L.
Zhao
,
C.
Marchioli
, and
H.
Andersson
, “
Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models
,”
Phys. Fluids
24
,
021705
(
2012
).
61.
M.
Prevel
,
I.
Vinkovic
,
D.
Doppler
,
C.
Pera
, and
M.
Buffat
, “
Direct numerical simulation of particle transport by hairpin vortices in a laminar boundary layer
,”
Int. J. Heat Fluid Flow
43
,
2
(
2013
).
62.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Preferential concentration of heavy particles: A Voronoi analysis
,”
Phys. Fluids
22
,
103304
(
2010
).
You do not currently have access to this content.