The dynamics of dilute micron-sized spherical inertial particles in turbulent duct flows is studied by means of direct numerical simulations of the carrier phase turbulence with one-way coupled Lagrangian particles. The geometries are a square and a rectangular duct with width-to-height aspect ratio AR of 3 operating at Reτ,c = 360 (based on the centerplane friction velocity and duct half-height). The present study is designed to determine the effect of turbulence-driven secondary motion on the particle dynamics. Our results show that a weak cross-flow secondary motion significantly changes the cross-sectional map of the particle concentration, mean velocity, and fluctuations. As the geometry of the duct is widened from AR = 1 to 3, the secondary vortex on the horizontal wall significantly expands in the spanwise direction, and although the kinetic energy of the secondary flow increases close to the corner, it decays towards the duct centreplane in the AR = 3 case so as the turbulent carrier phase approaches the behavior in spanwise-periodic channel flows, a fact that significantly affects the particle statistics. In the square duct the particle concentration in the viscous sublayer is maximum at the duct centreplane, whereas the maximum is found closer to the corner, at a distance of |z/h| ≈ 1.25 from the centreplane, in the AR = 3 case. Interestingly the centreplane concentration in the rectangular duct is around 3 times lower than that in the square duct. Moreover, a second peak in the accumulation distribution is found right at the corners for both ducts. At this location the concentration increases with particle inertia. The secondary motion changes also the cross-stream map of the particle velocities significantly in comparison to the fluid flow statistics. These directly affect the particle velocity fluctuations such that multiple peaks appear near the duct walls for the particle streamwise and wall-normal velocity fluctuations.

1.
M. W.
Reeks
, “
The transport of discrete particles in inhomogeneous turbulence
,”
J. Aerosol Sci.
14
,
729
(
1983
).
2.
J.
Young
and
A.
Leeming
, “
A theory of particle deposition in turbulent pipe flow
,”
J. Fluid Mech.
340
,
129
(
1997
).
3.
S.
Balachandar
and
J. K.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
(
2010
).
4.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
(
2009
).
5.
P.
Bradshaw
, “
Turbulent secondary flows
,”
Annu. Rev. Fluid Mech.
19
,
53
(
1987
).
6.
A.
Noorani
,
G.
Sardina
,
L.
Brandt
, and
P.
Schlatter
, “
Particle transport in turbulent curved pipe flows
,”
J. Fluid Mech.
793
,
248
(
2016
).
7.
A.
Noorani
,
G.
Sardina
,
L.
Brandt
, and
P.
Schlatter
, “
Particle velocity and acceleration in turbulent bent pipe flows
,”
Flow, Turbul. Combust.
95
,
539
(
2015
).
8.
R.
Vinuesa
,
A.
Noorani
,
A.
Lozano-Durán
,
G. K.
El Khoury
,
P.
Schlatter
,
P. F.
Fischer
, and
H. M.
Nagib
, “
Aspect ratio effects in turbulent duct flows studied through direct numerical simulation
,”
J. Turbul.
15
,
677
(
2014
).
9.
R.
Vinuesa
,
P.
Schlatter
, and
H. M.
Nagib
, “
On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows
,”
J. Turbul.
16
,
588
(
2015
).
10.
C.
Winkler
,
S.
Rani
, and
S.
Vanka
, “
Preferential concentration of particles in a fully developed turbulent square duct flow
,”
Int. J. Multiphase Flow
30
,
27
(
2004
).
11.
C.
Winkler
,
S.
Rani
, and
S.
Vanka
, “
A numerical study of particle wall-deposition in a turbulent square duct flow
,”
Powder Technol.
170
,
12
(
2006
).
12.
G.
Sharma
and
D.
Phares
, “
Turbulent transport of particles in a straight square duct
,”
Int. J. Multiphase flow
32
,
823
(
2006
).
13.
D.
Phares
and
G.
Sharma
, “
A DNS study of aerosol deposition in a turbulent square duct flow
,”
Aerosol Sci. Technol.
40
,
1016
(
2006
).
14.
J.
Yao
and
M.
Fairweather
, “
Inertial particle resuspension in a turbulent, square duct flow
,”
Phys. Fluids
22
,
033303
(
2010
).
15.
H.
Zhang
,
F.
Trias
,
A.
Gorobets
,
A.
Oliva
,
D.
Yang
,
Y.
Tan
, and
Y.
Sheng
, “
Effect of collisions on the particle behavior in a turbulent square duct flow
,”
Powder Technol.
269
,
320
(
2015
).
16.
M.
Guala
,
S. E.
Hommema
, and
R. J.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
(
2006
).
17.
J.
Jiménez
and
S.
Hoyas
, “
Turbulent fluctuations above the buffer layer of wall-bounded flows
,”
J. Fluid Mech.
611
,
215
(
2010
).
18.
G. K.
El Khoury
,
P.
Schlatter
,
A.
Noorani
,
P. F.
Fischer
,
G.
Brethouwer
, and
A. V.
Johansson
, “
Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers
,”
Flow, Turbul. Combust.
91
,
475
(
2013
).
19.
A.
Noorani
,
G. K.
El Khoury
, and
P.
Schlatter
, “
Evolution of turbulence characteristics from straight to curved pipes
,”
Int. J. Heat Fluid Flow
41
,
16
(
2013
).
20.
P. F.
Fischer
,
J. W.
Lottes
, and
S. G.
Kerkemeier
, Nek5000: Open source spectral element CFD solver, 2008. Available at http://nek5000.mcs.anl.gov.
21.
A. T.
Patera
, “
A spectral element method for fluid dynamics: Laminar flow in a channel expansion
,”
J. Comput. Phys.
54
,
468
(
1984
).
22.
Y.
Maday
and
A. T.
Patera
, “Spectral element methods for the Navier–Stokes equations,” inState of the Art Surveys in Computational Mechanics, edited by A. K. Noor (American Society of Mechanical Engineers, New York, 1989), pp. 71–143.
23.
L.
Schiller
and
A.
Naumann
, “
A drag coefficient correlation
,”
Z. Ver. Deut. Ing.
77
,
318
(
1935
).
24.
A.
Noorani
,
Particle-Laden Turbulent Wall-Bounded Flows in Moderately Complex Geometries
(
Royal Institute of Technology (KTH)
,
2015
).
25.
G.
Sardina
,
P.
Schlatter
,
L.
Brandt
,
F.
Picano
, and
C. M.
Casciola
, “
Wall accumulation and spatial localization in particle-laden wall flows
,”
J. Fluid Mech.
699
,
50
(
2012
).
26.
A.
Noorani
, Technical Report “
Lagrangian particles in turbulence and complex geometries
,” Licentiate thesis,
KTH Mechanics
,
2014
(TRITA-MEK, ISSN 0348-467X; 2014:04).
27.
A.
Huser
and
S.
Biringen
, “
Direct numerical simulation of turbulent flow in a square duct
,”
J. Fluid Mech.
257
,
65
(
1993
).
28.
A.
Pinelli
,
M.
Uhlmann
,
A.
Sekimoto
, and
G.
Kawahara
, “
Reynolds number dependence of mean flow structure in square duct turbulence
,”
J. Fluid Mech.
644
,
107
(
2009
).
29.
R.
Vinuesa
,
P.
Schlatter
, and
H. M.
Nagib
, “
Characterization of the secondary flow in turbulent rectangular ducts with varying aspect ratio
,” in Proceedings of the 9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP-9, Melbourne, Australia,
2015
, pp.
1
6
.
30.
D. P.
Sikovsky
, “
Singularity of inertial particle concentration in the viscous sublayer of wall-bounded turbulent flows
,”
Flow, Turbul. Combust.
92
,
41
(
2014
).
31.
C.
Marchioli
and
A.
Soldati
, “
Mechanisms for particle transfer and segregation in a turbulent boundary layer
,”
J. Fluid Mech.
468
,
283
(
2002
).
32.
J.
Yao
,
M.
Fairweather
, and
Y.
Zhao
, “
Numerical simulation of particle deposition in turbulent duct flows
,”
Ind. Eng. Chem. Res.
53
,
3329
(
2014
).
33.
F.
Picano
,
G.
Sardina
, and
C. M.
Casciola
, “
Spatial development of particle-laden turbulent pipe flow
,”
Phys. Fluids
21
,
093305
(
2009
).
34.
L.
Portela
,
P.
Cota
, and
R.
Oliemans
, “
Numerical study of the near-wall behaviour of particles in turbulent pipe flows
,”
Powder Technol.
125
,
149
(
2002
).
35.
C.
Marchioli
,
A.
Giusti
,
M. V.
Salvetti
, and
A.
Soldati
, “
Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow
,”
Int. J. Multiphase Flow
29
,
1017
(
2003
).
36.
M.
Picciotto
,
C.
Marchioli
, and
A.
Soldati
, “
Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers
,”
Phys. Fluids
17
,
098101
(
2005
).
37.
S.
Gerashchenko
,
N.
Sharp
,
S.
Neuscamman
, and
Z.
Warhaft
, “
Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer
,”
J. Fluid Mech.
617
,
255
(
2008
).
38.
K.
Yeo
,
B.
Kim
, and
C.
Lee
, “
On the near-wall characteristics of acceleration in turbulence
,”
J. Fluid Mech.
659
,
405
(
2010
).
39.
V.
Lavezzo
,
A.
Soldati
,
S.
Gerashchenko
,
Z.
Warhaft
, and
L.
Collins
, “
On the role of gravity and shear on inertial particle accelerations in near-wall turbulence
,”
J. Fluid Mech.
658
,
229
(
2010
).
40.
R.
Zamansky
,
I.
Vinkovic
, and
M.
Gorokhovski
, “
Acceleration statistics of solid particles in turbulent channel flow
,”
Phys. Fluids
23
,
113304
(
2011
).
41.
S.
Ayyalasomayajula
,
A.
Gylfason
,
L.
Collins
,
E.
Bodenschatz
, and
Z.
Warhaft
, “
Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence
,”
Phys. Rev. Lett.
97
,
144507
(
2006
).
42.
J.
Bec
,
L.
Biferale
,
G.
Boffetta
,
A.
Celani
,
M.
Cencini
,
A.
Lanotte
,
S.
Musacchio
, and
F.
Toschi
, “
Acceleration statistics of heavy particles in turbulence
,”
J Fluid Mech.
550
,
349
(
2006
).
43.
J.
Eaton
and
J.
Fessler
, “
Preferential concentration of particles by turbulence
,”
Int. J. Multiphase Flow
20
,
169
(
1994
).
You do not currently have access to this content.