Direct numerical simulation has been performed to investigate heat transfer in a zero-pressure-gradient spatially developing turbulent boundary layer with realistic thermal inflow boundary conditions. The temperature is considered as a passive scalar and the molecular Prandtl number is set to be 0.71. The turbulence statistics for both the velocity and temperature fields show good agreement with previous numerical and experimental data in the literature. The present study provides a valuable database for the spatially developing turbulent thermal boundary layer over a wide range of Reynolds numbers from Reθ = 1100 to 1940. The simulation results indicate that both the peak value and peak location of the streamwise velocity fluctuation grow slightly with increasing Reynolds number, same as those of the temperature fluctuation. The relationship between the streamwise velocity and temperature fluctuations has been examined and a strong correlation is observed in the vicinity of the wall. With increasing distance from the wall, however, the degree of correlation significantly decreases. In addition, the difference between the turbulent velocity and temperature fields is also analysed by investigating the mechanisms of heat and momentum transport in boundary layer flow.

1.
P. R.
Spalart
, “
Direct simulation of a turbulent boundary layer up to Rθ = 1410
,”
J. Fluid Mech.
187
,
61
(
1988
).
2.
T. S.
Lund
,
X. H.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
(
1998
).
3.
M. P.
Simens
,
J.
Jiménez
,
S.
Hoyas
, and
Y.
Mizuno
, “
A high-resolution code for turbulent boundary layers
,”
J. Comput. Phys.
228
,
4218
(
2009
).
4.
J. H.
Lee
and
H. J.
Sung
, “
Direct numerical simulation of a turbulent boundary layer up to Reθ = 2500
,”
Int. J. Heat Fluid Flow
32
,
1
(
2011
).
5.
G.
Araya
,
L.
Castillo
,
C.
Meneveau
, and
K.
Jansen
, “
A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially developing flows
,”
J. Fluid Mech.
670
,
581
(
2011
).
6.
A.
Ferrante
and
S. E.
Elghobashi
, “
A robust method for generating inflow conditions for direct simulations of spatially-developing turbulent boundary layers
,”
J. Comput. Phys.
198
,
372
(
2004
).
7.
X.
Wu
and
P.
Moin
, “
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer
,”
J. Fluid Mech.
630
,
5
(
2009
).
8.
P.
Schlatter
and
R.
Örlü
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid Mech.
659
,
116
(
2010
).
9.
P.
Schlatter
,
R.
Örlü
,
Q.
Li
,
G.
Brethouwer
,
J.
Fransson
,
A.
Johansson
,
P.
Alfredsson
, and
D.
Henningson
, “
Turbulent boundary layers up to Reθ = 2500 studied through simulation and experiment
,”
Phys. Fluids
21
,
051702
(
2009
).
10.
G.
Khujadze
and
M.
Oberlack
, “
DNS and scaling laws from new symmetry groups of ZPG turbulent boundary layer flow
,”
Theor. Comput. Fluid Dyn.
18
,
391
(
2004
).
11.
L.
Fulachier
and
R.
Dumas
, “
Spectral analogy between temperature and velocity fluctuations in a turbulent boundary layer
,”
J. Fluid Mech.
77
,
257
(
1976
).
12.
R.
Antonia
,
L.
Krishnamoorthy
, and
L.
Fulachier
, “
Correlation between the longitudinal velocity fluctuation and temperature fluctuation in the near-wall region of a turbulent boundary layer
,”
Int. J. Heat Mass Transfer
31
,
723
(
1988
).
13.
A.
Perry
and
P.
Hoffmann
, “
An experimental study of turbulent convective heat transfer from a flat plate
,”
J. Fluid Mech.
77
,
355
(
1976
).
14.
Y.
Iritani
,
N.
Kasagi
, and
M.
Hirata
, “
Heat transfer mechanism and associated turbulence structure in the near-wall region of a turbulent boundary layer
,” in
Turbulent Shear Flows 4
(
Springer-Verlag
,
Berlin
,
1985
), pp.
223
234
.
15.
C. H. P.
Chen
and
R. F.
Blackwelder
, “
Large-scale motion in a turbulent boundary layer: A study using temperature contamination
,”
J. Fluid Mech.
89
,
1
(
1978
).
16.
C.
Van Atta
and
K.
Helland
, “
Exploratory temperature-tagging measurements of turbulent spots in a heated laminar boundary layer
,”
J. Fluid Mech.
100
,
243
(
1980
).
17.
R.
Antonia
, “
Behaviour of the turbulent Prandtl number near the wall
,”
Int. J. Heat Mass Transfer
23
,
906
(
1980
).
18.
A.
Snijders
,
A.
Koppius
, and
C.
Nieuwvelt
, “
An experimental determination of the turbulent Prandtl number in the inner boundary layer for air flow over a flat plate
,”
Int. J. Heat Mass Transfer
26
,
425
(
1983
).
19.
W. M.
Kays
, “
Turbulent Prandtl number—Where are we?
,”
J. Heat Transfer
116
,
284
(
1994
).
20.
X.
Wu
and
P. A.
Durbin
, “
Numerical simulation of heat transfer in a transitional boundary layer with passing wakes
,”
J. Heat Transfer
122
,
248
(
2000
).
21.
H.
Kong
,
H.
Choi
, and
J. S.
Lee
, “
Direct numerical simulation of turbulent thermal boundary layers
,”
Phys. Fluids
12
,
2555
(
2000
).
22.
Q.
Li
,
P.
Schlatter
,
L.
Brandt
, and
D. S.
Henningson
, “
DNS of a spatially developing turbulent boundary layer with passive scalar transport
,”
Int. J. Heat Fluid Flow
30
,
916
(
2009
).
23.
X.
Wu
and
P.
Moin
, “
Transitional and turbulent boundary layer with heat transfer
,”
Phys. Fluids
22
,
085105
(
2010
).
24.
G.
Araya
and
L.
Castillo
, “
DNS of turbulent thermal boundary layers up to Reθ = 2300
,”
Int. J. Heat Mass Transfer
55
,
4003
(
2012
).
25.
J. B.
Perot
, “
An analysis of the fractional step method
,”
J. Comput. Phys.
108
,
51
(
1993
).
26.
J.
Lee
,
S. Y.
Jung
,
H. J.
Sung
, and
T. A.
Zaki
, “
Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity
,”
J. Fluid Mech.
726
,
196
(
2013
).
27.
D.
Li
,
K.
Luo
, and
J.
Fan
, “
Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer
,”
J. Fluid Mech.
802
,
359
(
2016
).
28.
I.
Orlanski
, “
A simple boundary condition for unbounded hyperbolic flows
,”
J. Comput. Phys.
21
,
251
(
1976
).
29.
W. M.
Kays
and
M. E.
Crawford
,
Convective Heat and Mass Transfer
, 3rd ed. (
McGraw-Hill
,
New York
,
1993
).
30.
L. P.
Purtell
, “
Turbulent boundary layer at low Reynolds number
,”
Phys. Fluids
24
,
802
(
1981
).
31.
K. J.
Colella
and
W. L.
Keith
, “
Measurements and scaling of wall shear stress fluctuations
,”
Exp. Fluids
34
,
253
(
2003
).
32.
D. B.
De Graaff
and
J. K.
Eaton
, “
Reynolds-number scaling of the flat-plate turbulent boundary layer
,”
J. Fluid Mech.
422
,
319
(
2000
).
33.
B. F.
Blackwell
,
W. M.
Kays
, and
R.
Moffat
, “
The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients
,” Ph.D. thesis,
Stanford University
,
1972
.
34.
R. I.
Karlsson
and
T.
Johansson
, “
LDV measurements of higher order moments of velocity fluctuations in a turbulent boundary layer
,” in
Laser Anemometry in Fluid Mechanics
, edited by
R. J.
Adrian
(
Lisbou, Portugal
,
1988
), pp.
273
289
.
35.
A.
Honkan
and
Y.
Andreopoulos
, “
Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers
,”
J. Fluid Mech.
350
,
29
(
1997
).
36.
S.
Mochizuki
and
F.
Nieuwstadt
, “
Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence
,”
Exp. Fluids
21
,
218
(
1996
).
37.
J.
Klewicki
,
J.
Murray
, and
R.
Falco
, “
Vortical motion contributions to stress transport in turbulent boundary layers
,”
Phys. Fluids
6
,
277
(
1994
).
38.
J.
Andreopoulos
,
F.
Durst
,
Z.
Zaric
, and
J.
Jovanovic
, “
Influence of Reynolds number on characteristics of turbulent wall boundary layers
,”
Exp. Fluids
2
,
7
(
1984
).
39.
M.
Gad-el-Hak
and
P. R.
Bandyopadhyay
, “
Reynolds number effects in wall-bounded turbulent flows
,”
Appl. Mech. Rev.
47
,
307
(
1994
).
40.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
1980
).
41.
A.
Perry
and
I.
Marušic
, “
A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis
,”
J. Fluid Mech.
298
,
361
(
1995
).
42.
H.
Fernholz
and
P.
Finleyt
, “
The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data
,”
Prog. Aerosp. Sci.
32
,
245
(
1996
).
43.
K.
Sreenivasan
, “
The turbulent boundary layer
,” in
Frontiers in Experimental Fluid Mechanics
(
Springer
,
1989
), pp.
159
209
.
44.
J.
Kim
and
P.
Moin
, “
Transport of passive scalars in a turbulent channel flow
,” in
Turbulent Shear Flows 6
(
Springer
,
1989
), pp.
85
96
.
45.
A. F.
Orlando
,
R.
Moffat
, and
W.
Kays
, “
Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature
,”
Stanford University Report No. HMT-17
,
1974
.
46.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25
,”
Phys. Fluids
16
,
530
(
2004
).
47.
G. I.
Park
,
J. M.
Wallace
,
X. H.
Wu
, and
P.
Moin
, “
Boundary layer turbulence in transitional and developed states
,”
Phys. Fluids
24
,
035105
(
2012
).
48.
X.
Liang
and
X.
Li
, “
Direct numerical simulation on Mach number and wall temperature effects in the turbulent flows of flat-plate boundary layer
,”
Commun. Comput. Phys.
17
,
189
(
2014
).
49.
R.
Moser
and
P.
Moin
, “Direct numerical simulation of curved turbulent channel flow,” NASA Tech. Memo. No. 85974 (1984).
50.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully-developed channel flow at low Reynolds-number
,”
J. Fluid Mech.
177
,
133
(
1987
).
You do not currently have access to this content.