A numerical study on two-dimensional (2D) rectangular plates falling freely in water is carried out in the range of 1.2 ≤ ρs/f ≤ 5.0 and 1/20 ≤ β ≤ 1/4, where ρs/f is the solid-to-water density ratio and β is the plate thickness-to-length ratio. To study this problem, the immersed boundary-lattice Boltzmann flux solver in a moving frame is applied and validated. For the numerical result, a phase diagram is constructed for fluttering, tumbling, and apparent chaotic motions of the plate parameterized using ρs/f and β. The evolution of vortical structures in both modes is decomposed into three typical stages of initial transient, deep gliding, and pitching-up. Various mean and instantaneous fluid properties are illustrated and analyzed. It is found that fluttering frequencies have a linear relationship with the Froude number for all cases considered. Lift forces on fluttering plates are linearly dependent on the angle of attack α at the cusp-like turning point when α π / 5 . Hysteresis of the lift force on fluttering plates is observed and explained whilst the drag forces are the same when α has the same value. Meanwhile, the drag force in the tumbling motion may have a positive propulsive effect when the plate begins a tumbling rotation from α = π/2.

1.
Aidun
,
C. K.
,
Lu
,
Y.
, and
Ding
,
E. J.
, “
Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation
,”
J. Fluid Mech.
373
,
287
311
(
1998
).
2.
Andersen
,
A.
,
Pesavento
,
U.
, and
Wang
,
Z. J.
, “
Analysis of transitions between fluttering, tumbling and steady descent of falling cards
,”
J. Fluid Mech.
541
,
91
104
(
2005a
).
3.
Andersen
,
A.
,
Pesavento
,
U.
, and
Wang
,
Z. J.
, “
Unsteady aerodynamics of fluttering and tumbling plates
,”
J. Fluid Mech.
541
,
65
90
(
2005b
).
4.
Assemat
,
P.
,
Fabre
,
D.
, and
Magnaudet
,
J.
, “
The onset of unsteadiness of two-dimensional bodies falling or rising in a viscous fluid: A linear study
,”
J. Fluid Mech.
690
,
173
202
(
2012
).
5.
Auguste
,
F.
,
Magnaudet
,
J.
, and
Fabre
,
D.
, “
Falling styles of disks
,”
J. Fluid Mech.
719
,
388
405
(
2013
).
6.
Belmonte
,
A.
,
Eisenberg
,
H.
, and
Moses
,
E.
, “
From flutter to tumble: Inertial drag and froude similarity in falling paper
,”
Phys. Rev. Lett.
81
(
2
),
345
348
(
1998
).
7.
Bonisch
,
S.
and
Heuveline
,
V.
, “
On the numerical simulation of the unsteady free fall of a solid in fluid. I. The Newtonian case
,”
Comput. Fluids
36
(
9
),
1434
1445
(
2007
).
8.
Chrust
,
M.
,
Bouchet
,
G.
, and
Dušek
,
J.
, “
Numerical simulation of the dynamics of freely falling discs
,”
Phys. Fluids
25
(
4
),
044102
(
2013
).
9.
Ern
,
P.
,
Risso
,
F.
,
Fabre
,
D.
, and
Magnaudet
,
J.
, “
Wake-induced oscillatory paths of bodies freely rising or falling in fluids
,”
Annu. Rev. Fluid Mech.
44
(
44
),
97
121
(
2012
).
10.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation
,”
J. Fluid Mech.
261
,
95
134
(
1994a
).
11.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows
,”
J. Fluid Mech.
277
,
271
301
(
1994b
).
12.
Field
,
S. B.
,
Klaus
,
M.
,
Moore
,
M. G.
, and
Nori
,
F.
, “
Chaotic dynamics of falling disks
,”
Nature
388
(
6639
),
252
254
(
1997
).
13.
Gazzola
,
M.
,
Chatelain
,
P.
,
Rees
,
W. M. V.
, and
Koumoutsakos
,
P.
, “
Simulations of single and multiple swimmers with non-divergence free deforming geometries
,”
J. Comput. Phys.
230
,
7093
7114
(
2011
).
14.
Huang
,
H.
,
Yang
,
X.
, and
Lu
,
X. Y.
, “
Sedimentation of an ellipsoidal particle in narrow tubes
,”
Phys. Fluids
26
(
5
),
053302
(
2014
).
15.
Isaacs
,
J. L.
and
Thodos
,
G.
, “
The free-settling of solid cylindrical particles in the turbulent regime
,”
Can. J. Chem. Eng.
45
(
3
),
150
155
(
1967
).
16.
Iversen
,
J. D.
, “
Autorotation flate-plate wings: The effect of the moment of inertia, geometry and Reynolds number
,”
J. Fluid Mech.
92
,
327
348
(
1979
).
17.
Jin
,
C.
and
Xu
,
K.
, “
A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation
,”
J. Comput. Phys.
222
(
1
),
155
175
(
2007
).
18.
Jones
,
M. A.
and
Shelley
,
M. J.
, “
Falling cards
,”
J. Fluid Mech.
540
,
393
425
(
2005
).
19.
Lee
,
C. B.
,
Su
,
Z.
,
Zhong
,
H. J.
,
Chen
,
S. Y.
,
Zhou
,
M. D.
, and
Wu
,
J. Z.
, “
Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral
,”
J. Fluid Mech.
732
,
77
104
(
2013
).
20.
Maxwell
,
J. C.
,
Niven
,
W. D.
, and
Maxwell
,
J. C.
,
On a Particular Case of the Descent of a Heavy Body in a Resisting Medium
(
Cambridge University Press
,
1853
).
21.
Mittal
,
R.
,
Seshadri
,
V.
, and
Udaykumar
,
H. S.
, “
Flutter, tumble and vortex induced autorotation
,”
Theor. Comput. Fluid Dyn.
17
(
3
),
165
170
(
2004
).
22.
Pesavento
,
U.
and
Wang
,
Z. J.
, “
Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation
,”
Phys. Rev. Lett.
93
(
14
),
144501
(
2004
).
23.
Shu
,
C.
,
Wang
,
Y.
,
Teo
,
C. J.
, and
Wu
,
J.
, “
Development of lattice Boltzmann flux solver for simulation of incompressible flows
,”
Adv. Appl. Math. Mech.
6
,
436
460
(
2014
).
24.
Smith
,
E. H.
, “
Autorotating wings: An experimental investigation
,”
J. Fluid Mech.
50
,
513
534
(
1971
).
25.
Tian
,
F. B.
,
Dai
,
H.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
, “
Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems
,”
J. Comput. Phys.
258
,
451
469
(
2014
).
26.
Vincent
,
L.
,
Shambaugh
,
W. S.
, and
Kanso
,
E.
, “
Holes stabilize freely falling coins
,”
J. Fluid Mech.
801
,
250
259
(
2016
).
27.
Wang
,
Y.
,
Shu
,
C.
,
Teo
,
C. J.
, and
Wu
,
J.
, “
An immersed boundary-lattice Boltzmann flux solver and its applications to flow-structure interaction problems
,”
J. Fluids Struct.
54
,
440
465
(
2015
).
28.
Wang
,
Z. J.
, “
Dissecting insect flight
,”
Annual Rev. Fluid Mech.
37
,
183
210
(
2005
).
29.
Wu
,
J.
,
Chen
,
Y. L.
, and
Zhao
,
N.
, “
Role of induced vortex interaction in a semi-active foil based energy harvester
,”
Phys. Fluids
27
,
093601
(
2015
).
30.
Zhong
,
H.
,
Chen
,
S. Y.
, and
Lee
,
C.
, “
Experimental study of freely falling thin disks: Transition from planar zigzag to spiral
,”
Phys. Fluids
23
,
011702
(
2011
).
31.
Zhong
,
H. J.
,
Lee
,
C. B.
,
Su
,
Z.
,
Chen
,
S. Y.
,
Zhou
,
M. D.
, and
Wu
,
J. Z.
, “
Experimental investigation of freely falling thin disks. I. The flow structures and Reynolds number effects on the zigzag motion
,”
J. Fluid Mech.
716
,
228
250
(
2013
).

Supplementary Material

You do not currently have access to this content.