Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

1.
P.
Helmholtz
, “
XLIII. On discontinuous movements of fluids
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
36
,
337
(
1868
).
2.
D.
McConalogue
and
R.
Srivastava
, “
Motion of a fluid in a curved tube
,”
Proc. R. Soc. London, Ser. A
307
,
37
(
1968
).
3.
W.
Lyne
, “
Unsteady viscous flow in a curved pipe
,”
J. Fluid Mech.
45
,
13
(
1971
).
4.
J.
Humphrey
,
A.
Taylor
, and
J.
Whitelaw
, “
Laminar flow in a square duct of strong curvature
,”
J. Fluid Mech.
83
,
509
(
1977
).
5.
J.
Humphrey
,
J.
Whitelaw
, and
G.
Yee
, “
Turbulent flow in a square duct with strong curvature
,”
J. Fluid Mech.
103
,
443
(
1981
).
6.
A.
Taylor
,
J.
Whitelaw
, and
M.
Yianneskis
, “
Curved ducts with strong secondary motion: Velocity measurements of developing laminar and turbulent flow
,”
J. Fluid Eng.
104
,
350
(
1982
).
7.
M.
Enayet
,
M.
Gibson
,
A.
Taylor
, and
M.
Yianneskis
, “
Laser-Doppler measurements of laminar and turbulent flow in a pipe bend
,”
Int. J. Heat Fluid Flow
3
,
213
(
1982
).
8.
M.
Enayet
,
M.
Gibson
, and
M.
Yianneskis
, “
Measurements of turbulent developing flow in a moderately curved square duct
,”
Int. J. Heat Fluid Flow
3
,
221
(
1982
).
9.
D. Y.
Pui
,
F.
Romay-Novas
, and
B. Y.
Liu
, “
Experimental study of particle deposition in bends of circular cross section
,”
Aerosol Sci. Technol.
7
,
301
(
1987
).
10.
K.
Sudo
,
M.
Sumida
, and
H.
Hibara
, “
Experimental investigation on turbulent flow in a square-sectioned 90-degree bend
,”
Exp. Fluids
30
,
246
(
2001
).
11.
R.
Hayes
,
K.
Nandakumar
, and
H.
Nasr-El-Din
, “
Steady laminar flow in a 90 degree planar branch
,”
Comput. Fluids
17
,
537
(
1989
).
12.
J.
Bramley
and
S.
Dennis
, “
The numerical solution of two-dimensional flow in a branching channel
,”
Comput. Fluids
12
,
339
(
1984
).
13.
J.
Bramley
and
D.
Sloan
, “
Numerical solution for two-dimensional flow in a branching channel using boundary-fitted coordinates
,”
Comput. Fluids
15
,
297
(
1987
).
14.
H.
Huang
and
B. R.
Seymour
, “
Finite difference solutions of incompressible flow problems with corner singularities
,”
J. Sci. Comput.
15
,
265
(
2000
).
15.
K.
Fotea
,
P.
Prinos
, and
A.
Goulas
,
Numerical Methods in Laminar and Turbulent Flow
(
Pineridge Press
,
1991
), Vol.
1
, pp.
381
392
.
16.
S.
Maharudrayya
,
S.
Jayanti
, and
A.
Deshpande
, “
Pressure losses in laminar flow through serpentine channels in fuel cell stacks
,”
J. Power Sources
138
,
1
(
2004
).
17.
J.
Wang
, “
Pressure drop and flow distribution in parallel-channel configurations of fuel cells: U-type arrangement
,”
Int. J. Hydrogen Energy
33
,
6339
(
2008
).
18.
M.
Bowers
and
I.
Mudawar
, “
High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks
,”
Int. J. Heat Mass Transfer
37
,
321
(
1994
).
19.
A.
Goullet
,
I.
Glasgow
, and
N.
Aubry
, “
Effects of microchannel geometry on pulsed flow mixing
,”
Mech. Res. Commun.
33
,
739
(
2006
).
20.
Y.
Ma
,
C.-P.
Sun
,
M.
Fields
,
Y.
Li
,
D. A.
Haake
,
B. M.
Churchill
, and
C.-M.
Ho
, “
An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure
,”
J. Micromech. Microeng.
18
,
045015
(
2008
).
21.
Y. K.
Suh
and
S.
Kang
, “
A review on mixing in microfluidics
,”
Micromachines
1
,
82
(
2010
).
22.
B. J.
Jimenez
, “
Transition to turbulence in two-dimensional Poiseuille flow
,”
J. Fluid Mech.
218
,
265
(
1990
).
23.
A.
Fortin
,
M.
Jardak
,
J.
Gervais
, and
R.
Pierre
, “
Old and new results on the two-dimensional Poiseuille flow
,”
J. Comput. Phys.
115
,
455
(
1994
).
24.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
1987
).
25.
H.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
,
1
(
1964
).
26.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
(
1965
).
27.
S. A.
Orszag
, “
Accurate solution of the Orr–Sommerfeld stability equation
,”
J. Fluid Mech.
50
,
689
(
1971
).
28.
B. F.
Armaly
,
F.
Durst
,
J.
Pereira
, and
B.
Schönung
, “
Experimental and theoretical investigation of backward-facing step flow
,”
J. Fluid Mech.
127
,
473
(
1983
).
29.
P. G.
Spazzini
,
G.
Iuso
,
M.
Onorato
,
N.
Zurlo
, and
G. M.
Di Cicca
, “
Unsteady behavior of back-facing step flow
,”
Exp. Fluids
30
,
551
(
2001
).
30.
F.
Pan
and
A.
Acrivos
, “
Steady flows in rectangular cavities
,”
J. Fluid Mech.
28
,
643
(
1967
).
31.
M.
Nallasamy
and
K. K.
Prasad
, “
On cavity flow at high Reynolds numbers
,”
J. Fluid Mech.
79
,
391
(
1977
).
32.
B.
Cantwell
and
D.
Coles
, “
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
,”
J. Fluid Mech.
136
,
321
(
1983
).
33.
A.
Prasad
and
C. H.
Williamson
, “
The instability of the shear layer separating from a bluff body
,”
J. Fluid Mech.
333
,
375
(
1997
).
34.
A.
Okajima
, “
Strouhal numbers of rectangular cylinders
,”
J. Fluid Mech.
123
,
379
(
1982
).
35.
H.-Q.
Zhang
,
U.
Fey
,
B. R.
Noack
,
M.
König
, and
H.
Eckelmann
, “
On the transition of the cylinder wake
,”
Phys. Fluids
7
,
779
(
1995
).
36.
J.
Delville
,
L.
Ukeiley
,
L.
Cordier
,
J. P.
Bonnet
, and
M.
Glauser
, “
Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition
,”
J. Fluid Mech.
391
,
91
(
1999
).
37.
Y.
Couder
,
J. M.
Chomaz
, and
M.
Rabaud
, “
On the hydrodynamics of soap films
,”
Physica D
37
,
384
(
1989
).
38.
M. A.
Rutgers
,
X. L.
Wu
, and
W. B.
Daniel
, “
Conducting fluid dynamics experiments with vertically falling soap films
,”
Rev. Sci. Instrum.
72
,
3025
(
2001
).
39.
P.
Vorobieff
and
R. E.
Ecke
, “
Soap film flows: Statistics of two-dimensional turbulence
,”
Phys. Rev. E
60
,
2953
(
1999
).
40.
T.
Pedley
,
R.
Schroter
, and
M.
Sudlow
, “
Flow and pressure drop in systems of repeatedly branching tubes
,”
J. Fluid Mech.
46
,
365
(
1971
).
41.
Z.
Zhang
and
C.
Kleinstreuer
, “
Transient airflow structures and particle transport in a sequentially branching lung airway model
,”
Phys. Fluids
14
,
862
(
2002
).
42.
K.
Perktold
and
G.
Rappitsch
, “
Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
,”
J. Biomech.
28
,
845
(
1995
).
43.
S.
Zhao
,
X.
Xu
,
A.
Hughes
,
S.
Thom
,
A.
Stanton
,
B.
Ariff
, and
Q.
Long
, “
Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation
,”
J. Biomech.
33
,
975
(
2000
).

Supplementary Material

You do not currently have access to this content.