The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.

1.
C.
Kharif
and
E.
Pelinovsky
, “
Physical mechanisms of the rogue wave phenomenon
,”
Eur. J. Mech., B: Fluids
22
(
6
),
603
634
(
2003
).
2.
K.
Dysthe
,
H. E.
Krogstad
, and
P.
Müller
, “
Oceanic rogue waves
,”
Annu. Rev. Fluid Mech.
40
,
287
310
(
2008
).
3.
T. A. A.
Adcock
and
P. H.
Taylor
, “
The physics of anomalous (rogue) ocean waves
,”
Rep. Prog. Phys.
77
(
10
),
105901
(
2014
).
4.
K. B.
Dysthe
, “
Note on a modification to the nonlinear Schrodinger equation for application to deep water waves
,”
Proc. R. Soc. A
369
(
1736
),
105
114
(
1979
).
5.
K.
Trulsen
and
K. B.
Dysthe
, “
A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water
,”
Wave Motion
24
(
3
),
281
289
(
1996
).
6.
H.
Socquet-Juglard
,
K.
Dysthe
,
K.
Trulsen
,
H. E.
Krogstad
, and
J.
Liu
, “
Probability distributions of surface gravity waves during spectral changes
,”
J. Fluid Mech.
542
,
195
216
(
2005
).
7.
O.
Gramstad
and
K.
Trulsen
, “
Influence of crest and group length on the occurrence of freak waves
,”
J. Fluid Mech.
582
,
463
472
(
2007
).
8.
A.
Toffoli
,
O.
Gramstad
,
K.
Trulsen
,
J.
Monbaliu
,
E.
Bitner-Gregersen
, and
M.
Onorato
, “
Evolution of weakly nonlinear random directional waves: Laboratory experiments and numerical simulations
,”
J. Fluid Mech.
664
,
313
336
(
2010
).
9.
D.
Clamond
,
M.
Francius
,
J.
Grue
, and
C.
Kharif
, “
Long time interaction of envelope solitons and freak wave formations
,”
Eur. J. Mech., B: Fluids
25
(
5
),
536
553
(
2006
).
10.
R. H.
Gibbs
and
P. H.
Taylor
, “
Formation of wall of water in ‘fully’ nonlinear simulations
,”
Appl. Ocean Res.
27
(
3
),
142
157
(
2005
).
11.
W. J. D.
Bateman
,
C.
Swan
, and
P. H.
Taylor
, “
On the efficient numerical simulation of directionally spread surface water waves
,”
J. Comput. Phys.
174
(
1
),
277
305
(
2001
).
12.
R. H.
Gibbs
, “
Walls of water on the open ocean
,” D.Phil thesis,
University of Oxford
, Trinty Term,
2004
.
13.
R. J.
Sobey
and
H.-B.
Liang
, “
Complex envelope identification of wave groups
,”
Coastal Eng. Proc.
1
(
1986
); available at .
14.
K.
Trulsen
,
I.
Kliakhandler
,
K. B.
Dysthe
, and
M. G.
Velarde
, “
On weakly nonlinear modulation of waves on deep water
,”
Phys. Fluids (1994-present)
12
(
10
),
2432
2437
(
2000
).
15.
G.
Lindgren
, “
Some properties of a normal process near a local maximum
,”
Ann. Math. Stat.
41
(
6
),
1870
1883
(
1970
).
16.
P.
Boccotti
, “
Some new results on statistical properties of wind waves
,”
Appl. Ocean Res.
5
(
3
),
134
140
(
1983
).
17.
P. S.
Tromans
,
A. R.
Anaturk
,
P.
Hagemeijer
 et al, “
A new model for the kinematics of large ocean waves-application as a design wave
,” in
The First International Offshore and Polar Engineering Conference
(
International Society of Offshore and Polar Engineers
,
1991
).
18.
T. E.
Baldock
,
C.
Swan
, and
P. H.
Taylor
, “
A laboratory study of nonlinear surface waves on water
,”
Philos. Trans. R. Soc., A
354
(
1707
),
649
676
(
1996
).
19.
P. H.
Taylor
and
E.
Vijfvinkel
, “
Focussed wave groups on deep and shallow water
,” in
Ocean Wave Kinematics, Dynamics and Loads on Structures
(
ASCE
,
1998
), pp.
420
427
.
20.
T. B.
Johannessen
and
C.
Swan
, “
A laboratory study of the focusing of transient and directionally spread surface water waves
,”
Proc. R. Soc. A
457
(
2008
),
971
1006
(
2001
).
21.
R. S.
Gibson
and
C.
Swan
, “
The evolution of large ocean waves: The role of local and rapid spectral changes
,”
Proc. R. Soc. A
463
(
2077
),
21
48
(
2007
).
22.
T. A. A.
Adcock
and
P. H.
Taylor
, “
Energy input amplifies nonlinear dynamics of deep water wave groups
,”
Int. J. Offshore Polar Eng.
21
,
1:8
12
(
2011
).
23.
P. H.
Taylor
,
D. G.
Walker
,
R.
Eatock Taylor
, and
A. C.
Hunt
, “
On the estimation of directional spreading from a single wave staff
,” in
Proceedings of 5th International Conference on Ocean Wave Measurement and Analysis
,
Madrid, Spain
(
2005
), pp.
3
7
.
24.
C. J.
Fitzgerald
,
P. H.
Taylor
,
R.
Eatock Taylor
,
J.
Grice
, and
J.
Zang
, “
Phase manipulation and the harmonic components of ringing forces on a surface-piercing column
,”
Proc. R. Soc. A
470
(
2168
),
20130847
(
2014
).
25.
T. A. A.
Adcock
,
R. H.
Gibbs
, and
P. H.
Taylor
, “
The nonlinear evolution and approximate scaling of directionally spread wave groups on deep water
,”
Proc. R. Soc. A
468
(
2145
),
2704
2721
(
2012
).
26.
D. U.
Martin
and
H. C.
Yuen
, “
Quasi-recurring energy leakage in the two-space-dimensional nonlinear Schrödinger equation
,”
Phys. Fluids (1958–1988)
23
(
5
),
881
883
(
1980
).
27.
K.
Trulsen
and
K. B.
Dysthe
, “
Frequency downshift in three-dimensional wave trains in a deep basin
,”
J. Fluid Mech.
352
,
359
373
(
1997
).
28.
M.
Longuet-Higgins
, “
On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: A simplified model
,”
Proc. R. Soc. A
347
(
1650
),
311
328
(
1976
).
29.
K. B.
Dysthe
,
K.
Trulsen
,
H. E.
Krogstad
, and
H.
Socquet-Juglard
, “
Evolution of a narrow-band spectrum of random surface gravity waves
,”
J. Fluid Mech.
478
,
1
10
(
2003
).
30.
M. S.
Longuet-Higgins
, “
Resonant interactions between two trains of gravity waves
,”
J. Fluid Mech.
12
(
03
),
321
332
(
1962
).
31.
P. A. E. M.
Janssen
, “
On some consequences of the canonical transformation in the Hamiltonian theory of water waves
,”
J. Fluid Mech.
637
,
1
44
(
2009
).
32.
T. A. A.
Adcock
and
S.
Draper
, “
The second order contribution to wave crest amplitude random simulations and NewWave
,” in
Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference
(Kona, Big Island, Hawaii, USA, June 21-26,
2015
).
33.
T. A. A.
Adcock
and
P. H.
Taylor
, “
Estimating ocean wave directional spreading from an Eulerian surface elevation time history
,”
Proc. R. Soc. A
465
(
2111
),
3361
3381
(
2009
).
34.
P. A. E. M.
Janssen
, “
Nonlinear four-wave interactions and freak waves
,”
J. Phys. Oceanogr.
33
(
4
),
863
884
(
2003
).
35.
T. A. A.
Adcock
and
P. H.
Taylor
, “
Focusing of unidirectional wave groups on deep water: An approximate nonlinear Schrödinger equation-based model
,”
Proc. R. Soc. A
465
(
2110
),
3083
3102
(
2009
).
You do not currently have access to this content.