Direct numerical simulation of a turbulent boundary layer over a rod-roughened wall is performed with a long streamwise domain to examine the streamwise-scale growth mechanism of streamwise velocity fluctuating structures in the presence of two-dimensional (2-D) surface roughness. An instantaneous analysis shows that there is a slightly larger population of long structures with a small helix angle (spanwise inclinations relative to streamwise) and a large spanwise width over the rough-wall compared to that over a smooth-wall. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure through a spanwise merging process over the rough-wall; moreover, spanwise merging for streamwise scale growth is expected to occur frequently over the rough-wall due to the large spanwise scales generated by the 2-D roughness. Finally, we examine the influence of a large width and a small helix angle of the structures over the rough-wall with regard to spatial two-point correlation. The results show that these factors can increase the streamwise coherence of the structures in a statistical sense.

1.
B.
Ganapathisubramani
,
E. K.
Longmire
, and
I.
Marusic
, “
Characteristics of vortex packets in turbulent boundary layers
,”
J. Fluid Mech.
478
,
35
46
(
2003
).
2.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
28
(
2007
).
3.
X.
Wu
,
J. R.
Baltzer
, and
R. J.
Adrian
, “
Direct numerical simulation of a 30R long turbulent pipe flow at R+ = 685: Large- and very large-scale motions
,”
J. Fluid Mech.
698
,
235
281
(
2012
).
4.
J.
Jiménez
, “
The largest scales of turbulent wall flows
,” in
Annual Research Briefs
(
Center for Turbulence Research, Stanford University
,
1998
), pp.
137
154
.
5.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
6.
J. H.
Lee
and
H. J.
Sung
, “
Very-large-scale motions in a turbulent boundary layer
,”
J. Fluid Mech.
673
,
80
120
(
2011
).
7.
C. D.
Tomkins
and
R. J.
Adrian
, “
Spanwise structure and scale growth in turbulent boundary layers
,”
J. Fluid Mech.
490
,
37
74
(
2003
).
8.
J. R.
Baltzer
,
R. J.
Adrian
, and
X.
Wu.
, “
Structural organization of large and very large scales in turbulent pipe flow simulation
,”
J. Fluid Mech.
720
,
236
279
(
2013
).
9.
J.
Lee
,
J. H.
Lee
,
J.-I.
Choi
, and
H. J.
Sung
, “
Spatial organization of large- and very-large-scale motions in a turbulent channel flow
,”
J. Fluid Mech.
749
,
818
840
(
2014
).
10.
K. C.
Kim
and
R. J.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
422
(
1999
).
11.
P.-Å.
Krogstad
and
R. A.
Antonia
, “
Structure of turbulent boundary layers on smooth and rough walls
,”
J. Fluid Mech.
277
,
1
21
(
1994
).
12.
R. J.
Volino
,
M. P.
Schultz
, and
K. A.
Flack
, “
Turbulence structure in rough- and smooth-wall boundary layers
,”
J. Fluid Mech.
592
,
263
293
(
2007
).
13.
Y.
Wu
and
K. T.
Christensen
, “
Spatial structure of a turbulent boundary layer with irregular surface roughness
,”
J. Fluid Mech.
655
,
380
418
(
2010
).
14.
J. H.
Lee
,
H. J.
Sung
, and
P.-A.
Krogstad
, “
Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
,”
J. Fluid Mech.
669
,
397
431
(
2011
).
15.
R. J.
Volino
,
M. P.
Schultz
, and
K. A.
Flack
, “
Turbulence structure in a boundary layer with two-dimensional roughness
,”
J. Fluid Mech.
635
,
75
101
(
2009
).
16.
R. J.
Volino
,
M. P.
Schultz
, and
K. A.
Flack
, “
Turbulence structure in boundary layers over periodic two- and three-dimensional roughness
,”
J. Fluid Mech.
676
,
172
190
(
2011
).
17.
Y.
Wu
and
K. T.
Christensen
, “
Outer-layer similarity in the presence of a practical rough-wall topography
,”
Phys. Fluids
19
,
085108
(
2007
).
18.
S. C. C.
Bailey
,
M.
Hultmark
,
A. J.
Smits
, and
M. P.
Schultz
, “
Azimuthal structure of turbulence in high Reynolds number pipe flow
,”
J. Fluid Mech.
615
,
121
138
(
2008
).
19.
R.
Mejia-Alvarez
,
Y.
Wu
, and
K. T.
Christensen
, “
Observations of meandering superstructures in the roughness sublayer of a turbulent boundary layer
,”
Int. J. Heat Fluid Flow
48
,
43
51
(
2014
).
20.
D. J. C.
Dennis
and
T. B.
Nickels
, “
On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer
,”
J. Fluid Mech.
614
,
197
206
(
2008
).
21.
J. C.
del Álamo
and
J.
Jiménez
, “
Estimation of turbulent convection velocities and corrections to Taylor’s approximation
,”
J. Fluid Mech.
640
,
5
26
(
2009
).
22.
K. A.
Flack
,
M. P.
Schultz
, and
J. S.
Connelly
, “
Examination of a critical roughness height for outer layer similarity
,”
Phys. Fluids
19
,
095104
(
2007
).
23.
K.
Kim
,
S.-J.
Baek
, and
H. J.
Sung
, “
An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
138
(
2002
).
24.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
150
(
2001
).
25.
S. H.
Lee
and
H. J.
Sung
, “
Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall
,”
J. Fluid Mech.
584
,
125
146
(
2007
).
26.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially developing boundary layer simulation
,”
J. Comput. Phys.
140
,
233
258
(
1998
).
27.
P. R.
Spalart
, “
Direct simulation of a turbulent boundary layer up to Reθ = 1410
,”
J. Fluid Mech.
187
,
61
98
(
1988
).
28.
P. S.
Jackson
, “
On the displacement height in the logarithmic profiles
,”
J. Fluid Mech.
111
,
15
25
(
1981
).
29.
J. H.
Lee
, “
Turbulent boundary layer flow with a step change from smooth to rough surface
,”
Int. J. Heat Fluid Flow
54
,
39
54
(
2015
).
30.
M.
Bernardini
and
S.
Pirozzoli
, “
Inner/outer layer interactions in turbulent boundary layers: A refined measure for the large-scale amplitude modulation mechanism
,”
Phys. Fluids
23
,
061701
(
2011
).
31.
J.
Ahn
,
J. H.
Lee
,
S. J.
Jang
, and
H. J.
Sung
, “
Direct numerical simulation of fully developed turbulent pipe flows
,”
Int. J. Heat Fluid Flow
44
,
222
228
(
2013
).
32.
R. J.
Adrian
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
33.
R. L.
Panton
, “
Overview of the self-sustaining mechanisms of wall turbulence
,”
Prog. Aerosp. Sci.
37
,
341
383
(
2001
).
34.
A. E.
Perry
and
I.
Marusic
, “
A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis
,”
J. Fluid Mech.
298
,
361
388
(
1995
).
You do not currently have access to this content.