Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid’s thermodynamic state. The injected fluid is either in a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.

1.
E.
Messerschmid
and
S.
Fasoulas
,
Raumfahrtsysteme
, 3rd ed. (
Springer
,
2009
), ISBN: 978-3-540-77699-4.
2.
M.
Oschwald
,
J. J.
Smith
,
R.
Branam
,
J.
Hussong
, and
A.
Schik
, “
Injection of fluids into supercritical environments
,”
Combust. Sci. Technol.
178
(
1-3
),
49
100
(
2006
).
3.
B.
Chehroudi
, “
Recent experimental efforts on high-pressure supercritical injection for liquid rockets and their implications
,”
Int. J. Aerosp. Eng.
2012
,
121802
(
2012
).
4.
W.
Mayer
,
J.
Telaar
,
R.
Branam
,
G.
Schneider
, and
J.
Hussong
, “
Raman measurements of cryogenic injection at supercritical pressure
,”
Heat Mass Transfer
39
(
8-9
),
709
719
(
2003
).
5.
J.
Telaar
,
G.
Schneider
,
J.
Hussong
, and
W.
Mayer
, “
Cryogenic jet injection: Test case RCM 1
,” in
Proceedings of the 2nd International Workshop on Rocket Combustion Modeling
(
Elsevier
,
Amsterdam, The Netherlands
,
2001
), pp.
25
27
.
6.
B.
Chehroudi
,
R.
Cohn
,
D.
Talley
, and
A.
Badakhshan
, “
Raman scattering measurement in the initial region of sub- and supercritical jets
,” AIAA Paper No. 2000-3392,
2000
.
7.
M.
Oschwald
and
A.
Schik
, “
Supercritical nitrogen free jet investigated by spontaneous Raman scattering
,”
Exp. Fluids
27
(
6
),
497
506
(
1999
).
8.
W.
Mayer
and
H.
Tamura
, “
Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine
,”
J. Propul. Power
12
,
1137
1147
(
1996
).
9.
J. C.
Oefelein
and
V.
Yang
, “
Modeling high-pressure mixing and combustion processes in liquid rocket engines
,”
J. Propul. Power
14
(
5
),
843
857
(
1998
).
10.
N.
Zong
,
H.
Meng
,
S.-Y.
Hsieh
, and
V.
Yang
, “
A numerical study of cryogenic fluid injection and mixing under supercritical conditions
,”
Phys. Fluids
16
(
12
),
4248
4261
(
2004
).
11.
N.
Zong
and
V.
Yang
, “
Cryogenic fluid jets and mixing layers in transcritical and supercritical environments
,”
Combust. Sci. Technol.
178
(
1-3
),
193
227
(
2006
).
12.
J. C.
Oefelein
, “
Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at supercritical pressure
,”
Combust. Sci. Technol.
178
(
1-3
),
229
252
(
2006
).
13.
T.
Schmitt
,
L.
Selle
,
B.
Cuenot
, and
T.
Poinsot
, “
Large-eddy simulation of transcritical flows
,”
C. R. Mec.
337
(
6
),
528
538
(
2009
).
14.
D.-Y.
Peng
and
D. P.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
(
1
),
59
64
(
1976
).
15.
T.
Kim
,
Y.
Kim
, and
S.-K.
Kim
, “
Numerical study of cryogenic liquid nitrogen jets at supercritical pressures
,”
J. Supercrit. Fluids
56
(
2
),
152
163
(
2011
).
16.
G.
Soave
, “
Equilibrium constants from a modified Redlich-Kwong equation of state
,”
Chem. Eng. Sci.
27
(
6
),
1197
1203
(
1972
).
17.
NIST Chemistry WebBook
, edited by
P. J.
Linstrom
and
W. G.
Mallard
,
NIST Standard Reference Database Number 69
(
NIST, National Institute of Standards and Technology
,
2011
), URL: http://webbook.nist.gov/chemistry/fluid/.
18.
A.
Urbano
and
F.
Nasuti
, “
Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows
,”
Heat Mass Transfer
65
,
599
609
(
2013
).
19.
O.
Kunz
,
R.
Klimeck
,
W.
Wagner
, and
M.
Jaeschke
,
The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures
(
VDI
,
Düsseldorf
,
2007
).
20.
J.
Matheis
,
H.
Müller
,
C.
Lenz
,
M.
Pfitzner
, and
S.
Hickel
, “
Volume translation methods for real-gas computational fluid dynamics simulations
,”
J. Supercrit. Fluids
107
,
422
432
(
2016
).
21.
K. G.
Harstad
,
R. S.
Miller
, and
J.
Bellan
, “
Efficient high-pressure state equations
,”
AIChE J.
43
(
6
),
1605
1610
(
1997
).
22.
A. M.
Abudour
,
S. A.
Mohammad
,
R. L.
Robinson
, Jr.
, and
K. A. M.
Gasem
, “
Volume-translated Peng–Robinson equation of state for saturated and single-phase liquid densities
,”
Fluid Phase Equilib.
335
,
74
87
(
2012
).
23.
M.
Jarczyk
and
M.
Pfitzner
, “
Large eddy simulation of supercritical nitrogen jets
,” AIAA Paper No. 2012-1270,
2012
.
24.
C. A.
Niedermeier
,
H.
Müller
,
M.
Jarczyk
,
S.
Hickel
,
N. A.
Adams
, and
M.
Pfitzner
, “
Large-eddy simulation of turbulent trans- and supercritical mixing
,” AIAA Paper No. 2013-2950,
2013
.
25.
L. C.
Selle
,
N. A.
Okong’o
,
J.
Bellan
, and
K. G.
Harstad
, “
Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: An a priori study
,”
J. Fluid Mech.
593
,
57
91
(
2007
).
26.
T. S.
Park
, “
LES and RANS simulations of cryogenic liquid nitrogen jets
,”
J. Supercrit. Fluids
72
,
232
247
(
2012
).
27.
X.
Petit
,
G.
Ribert
,
G.
Lartigue
, and
P.
Domingo
, “
Large eddy simulation of supercritical fluid injection
,”
J. Supercrit. Fluids
84
,
61
73
(
2013
).
28.
A. W.
Vreman
, “
An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications
,”
Phys. Fluids
16
(
10
),
3670
3681
(
2004
).
29.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations. I. The basic experiment
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
30.
S.
Hickel
,
N. A.
Adams
, and
J. A.
Domaradzki
, “
An adaptive local deconvolution method for implicit LES
,”
J. Comput. Phys.
213
(
1
),
413
436
(
2006
).
31.
S.
Hickel
,
C. P.
Egerer
, and
J.
Larsson
, “
Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction
,”
Phys. Fluids
26
,
106101
(
2014
).
32.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
(
2
),
652
665
(
2003
).
33.
T.
Schmitt
,
J.
Rodriguez
,
I. A.
Leyva
, and
S.
Candel
, “
Experiments and numerical simulation of mixing under supercritical conditions
,”
Phys. Fluids
24
(
5
),
055104
(
2012
).
34.
H.
Müller
,
J.
Matheis
,
M.
Pfitzner
, and
S.
Hickel
, “
Large-eddy simulation of coaxial LN2/GH2 injection at trans- and supercritical conditions
,”
J. Propul. Power
(published online 2015).
35.
D. T.
Banuti
and
K.
Hannemann
, “
Effect of injector wall heat flux on cryogenic injection
,” AIAA Paper No. 2010-7139,
2010
.
36.
M.
Meyer
,
A.
Devesa
,
S.
Hickel
,
X. Y.
Hu
, and
N. A.
Adams
, “
A conservative immersed interface method for large-eddy simulation of incompressible flows
,”
J. Comput. Phys.
229
(
18
),
6300
6317
(
2010
).
37.
F.
Örley
,
V.
Pasquariello
,
S.
Hickel
, and
N. A.
Adams
, “
Cut-element based immersed boundary method for moving geometries in compressible liquid flows with cavitation
,”
J. Comput. Phys.
283
,
1
22
(
2015
).
38.
S.
Gottlieb
and
C. W.
Shu
, “
Total variation diminishing Runge–Kutta schemes
,”
Math. Comput.
67
(
221
),
73
85
(
1998
).
39.
B.
van Leer
, “
Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme
,”
J. Comput. Phys.
14
(
4
),
361
370
(
1974
).
40.
B.
Koren
, “
A robust upwind discretization method for advection, diffusion and source terms
,” in
Numerical Methods for Advection-Diffusion Problems
, edited by
C. B.
Vreugdenhil
and
B.
Koren
(
Vieweg
,
Braunschweig
,
1993
), pp.
117
138
.
41.
P. L.
Roe
, “
Characteristic-based schemes for the Euler equations
,”
Annu. Rev. Fluid Mech.
18
,
337
365
(
1986
).
42.
E. S.
Taskinoglu
and
J.
Bellan
, “
A posteriori study using a DNS database describing fluid disintegration and binary-species mixing under supercritical pressure: Heptane and nitrogen
,”
J. Fluid Mech.
645
,
211
254
(
2010
).
43.
E. S.
Taskinoglu
and
J.
Bellan
, “
Subgrid-scale models and large-eddy simulation of oxygen stream disintegration and mixing with a hydrogen or helium stream at supercritical pressure
,”
J. Fluid Mech.
679
,
156
193
(
2011
).
44.
R.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
(
1
),
40
65
(
1985
).
45.
R.
Issa
,
B.
Ahmadi-Befrui
,
K.
Beshay
, and
A.
Grosman
, “
Solution of the implicitly discretised reacting flow equations by operator splitting
,”
J. Comput. Phys.
93
(
2
),
388
410
(
1991
).
46.
M.
Jarczyk
, “
Numerische modellierung von turbulenten Strömungen realer gasgemische
,” Ph.D. thesis,
Universität der Bundeswehr München
,
2013
.
47.
V.
Pasquariello
,
M.
Grilli
,
S.
Hickel
, and
N. A.
Adams
, “
Large-eddy simulation of passive shock-wave/boundary-layer interaction control
,”
Int. J. Heat Fluid Flow
49
,
116
127
(
2014
).
48.
M.
Grilli
,
S.
Hickel
, and
N. A.
Adams
, “
Large-eddy simulation of a supersonic turbulent boundary layer over a compression–expansion ramp
,”
Int. J. Heat Fluid Flow
42
,
79
93
(
2013
).
49.
J. F.
Quaatz
,
M.
Giglmaier
,
S.
Hickel
, and
N. A.
Adams
, “
Large-eddy simulation of a pseudo-shock system in a laval nozzle
,”
Int. J. Heat Fluid Flow
49
,
108
115
(
2014
).
50.
C. P.
Egerer
,
S.
Hickel
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Large-eddy simulation of turbulent cavitating flow in a micro channel
,”
Phys. Fluids
26
(
8
),
085102
(
2014
).
51.
F.
Örley
,
T.
Trummler
,
S.
Hickel
,
M. S.
Mihatsch
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Large-eddy simulation of cavitating nozzle flow and primary jet break-up
,”
Phys. Fluids
27
(
8
),
086101
(
2015
).
52.
D. J.
Hill
and
D. I.
Pullin
, “
Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks
,”
J. Comput. Phys.
194
(
2
),
435
450
(
2004
).
53.
X. Y.
Hu
,
N. A.
Adams
, and
C.-W.
Shu
, “
Positivity-preserving method for high-order conservative schemes solving compressible Euler equations
,”
J. Comput. Phys.
242
,
169
180
(
2013
).
54.
S.
Remmler
and
S.
Hickel
, “
Spectral eddy viscosity of stratified turbulence
,”
J. Fluid Mech.
755
,
R6
(
2014
).
55.
R. A.
Clark
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Evaluation of subgrid-scale models using an accurately simulated turbulent flow
,”
J. Fluid Mech.
91
(
1
),
1
16
(
1979
).
56.
G.
Erlebacher
,
M. Y.
Hussaini
,
C. G.
Speziale
, and
T. A.
Zang
, “
Towards the large-eddy simulation of compressible turbulent flows
,”
J. Fluid Mech.
238
,
155
185
(
1992
).
57.
C.
Fureby
, “
On subgrid scale modeling in large eddy simulations of compressible fluid flow
,”
Phys. Fluids
8
(
5
),
1301
1311
(
1996
).
58.
B. E.
Poling
,
J. M.
Prausnitz
, and
J. P.
O’Connell
,
The Properties of Gases and Liquids
, 5th ed. (
Mcgraw-Hill Professional
,
2000
).
59.
E.
Goos
,
A.
Burcat
, and
B.
Ruscic
, “Extended third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables,” Report No. TAE 960, Technion –Israel Institute of Technology, Haifa, 2009, URL: http://burcat.technion.ac.il/dir.
60.
T.-H.
Chung
,
M.
Ajlan
,
L. L.
Lee
, and
K. E.
Starling
, “
Generalized multiparameter correlation for nonpolar and polar fluid transport properties
,”
Ind. Eng. Chem. Res.
27
(
4
),
671
679
(
1988
).
61.
J. M.
Prausnitz
,
R. N.
Lichtenthaler
, and
E. G.
de Azevedo
,
Molecular Thermodynamics of Fluid-phase Equilibria
, 2nd ed. (
Prentice Hall
,
1986
).
62.
J. J.
Martin
, “
Cubic equations of state - which?
,”
Ind. Eng. Chem. Fundam.
18
(
2
),
81
97
(
1979
).
63.
G. F.
Chou
and
J. M.
Prausnitz
, “
A phenomenological correction to an equation of state for the critical region
,”
AIChE J.
35
(
9
),
1487
1496
(
1989
).
64.
R.
Span
,
E. W.
Lemmon
,
R. T.
Jacobsen
,
W.
Wagner
, and
A.
Yokozeki
, “
A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa
,”
J. Phys. Chem. Ref. Data
29
(
6
),
1361
1433
(
2000
).
65.
J. R.
Elliott
and
C. T.
Lira
,
Introductory Chemical Engineering Thermodynamics
, 2nd ed. (
Prentice Hill
,
2012
).
You do not currently have access to this content.