It is known that in a hydrodynamic Taylor-Couette system, uniform rotation or a rotation law with positive shear (“super-rotation”) is linearly stable. It is also known that a conducting fluid under the presence of a sufficiently strong axial electric-current becomes unstable against nonaxisymmetric disturbances. It is thus suggestive that a cylindrical pinch formed by a homogeneous axial electric-current is stabilized by rotation laws with dΩ/dR ≥ 0. For magnetic Prandtl number Pm ≠ 1 and for slow rotation, however, rigid rotation and super-rotation support the instability by lowering the critical Hartmann numbers. This double-diffusive instability of super-rotation even exists for toroidal magnetic fields with rather arbitrary radial profiles, the current-free profile Bϕ ∝ 1/R included. The sign of the azimuthal drift of the nonaxisymmetric hydromagnetic instability pattern strongly depends on the magnetic Prandtl number. The pattern counterrotates with the flow for Pm ≪ 1 and it corotates for Pm ≫ 1 while for rotation laws with negative shear, the instability pattern migrates in the direction of the basic rotation for all Pm. An axial electric-current of minimal 3.6 kA flowing inside or outside the inner cylinder suffices to realize the double-diffusive instability for super-rotation in experiments using liquid sodium as the conducting fluid between the rotating cylinders. The limit is 11 kA if a gallium alloy is used.

1.
R. J.
Tayler
, “
The adiabatic stability of stars containing magnetic fields. I. Toroidal fields
,”
Mon. Not. R. Astron. Soc.
161
,
365
380
(
1973
).
2.
G.
Rüdiger
,
R.
Hollerbach
,
M.
Schultz
, and
D.
Elstner
, “
Destabilization of hydrodynamically stable rotation laws by azimuthal magnetic fields
,”
Mon. Not. R. Astron. Soc.
377
,
1481
1487
(
2007
).
3.
R.
Hollerbach
,
V.
Teeluck
, and
G.
Rüdiger
, “
Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor–Couette flow
,”
Phys. Rev. Lett.
104
,
44502
(
2010
).
4.
G.
Rüdiger
,
M.
Gellert
,
M.
Schultz
,
R.
Hollerbach
, and
F.
Stefani
, “
Astrophysical and experimental implications from the magnetorotational instability of toroidal fields
,”
Mon. Not. R. Astron. Soc.
438
,
271
277
(
2014
).
5.
G. I.
Taylor
, “
Fluid friction between rotating cylinders. I. Torque measurements
,”
Proc. R. Soc. A
157
,
546
564
(
1936
).
6.
F.
Schultz-Grunow
, “
Zur Stabilität der Couette-Strömung
,”
Z. Angew. Math. Mech.
39
,
101
110
(
1959
).
7.
D.
Borrero-Echeverry
,
M. F.
Schatz
, and
R.
Tagg
, “
Transient turbulence in Taylor-Couette flow
,”
Phys. Rev. E
81
,
25301
(
2010
).
8.
M. J.
Burin
and
C. J.
Czarnocki
, “
Subcritical transition and spiral turbulence in circular Couette flow
,”
J. Fluid Mech.
79
,
106
122
(
2012
).
9.
W.
Liu
,
J.
Goodman
,
I.
Herron
, and
H.
Ji
, “
Helical magnetorotational instability in magnetized Taylor-Couette flow
,”
Phys. Rev. E
74
,
056302
(
2006
).
10.
A.
Bonanno
and
U.
Urpin
, “
Non-axisymmetric instability of axisymmetric magnetic fields
,”
Astron. Astrophys.
488
,
1
7
(
2008
).
11.
O.
Kirillov
and
F.
Stefani
, “
Extending the range of the inductionless magnetorotational instability
,”
Phys. Rev. Lett.
111
,
062203
(
2013
).
12.
D. J.
Acheson
, “
On the instability of toroidal magnetic fields and differential rotation in stars
,”
Philos. Trans. R. Soc., A
289
,
459
495
(
1978
).
13.
P. H.
Roberts
, “
Twisted magnetic fields
,”
Astrophys. J.
124
,
430
(
1956
).
14.
R. J.
Tayler
, “
Hydromagnetic instabilities of an ideally conducting fluid
,”
Proc. Phys. Soc. B
70
,
31
48
(
1957
).
15.
G.
Rüdiger
and
M.
Schultz
, “
Tayler instability of toroidal magnetic fields in MHD Taylor-Couette flows
,”
Astron. Nachr.
331
,
121
129
(
2010
).
16.
M.
Seilmayer
,
F.
Stefani
,
T.
Gundrum
,
T.
Weier
,
G.
Gerbeth
,
M.
Gellert
, and
G.
Rüdiger
, “
Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column
,”
Phys. Rev. Lett.
108
,
244501
(
2012
).
17.
M.
Seilmayer
,
V.
Galindo
,
G.
Gerbeth
,
T.
Gundrum
,
F.
Stefani
,
M.
Gellert
,
G.
Rüdiger
,
M.
Schultz
, and
R.
Hollerbach
, “
Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field
,”
Phys. Rev. Lett.
113
,
024505
(
2014
).
18.
T. A.
Yousef
,
A.
Brandenburg
, and
G.
Rüdiger
, “
Turbulent magnetic Prandtl number and magnetic diffusivity quenching from simulations
,”
Astron. Astrophys.
411
,
321
327
(
2003
).
19.
D. O.
Gough
, in
The Solar Tachocline
, edited by
D.
Hughes
,
R.
Rosner
, and
N.
Weiss
(
Cambridge University Press
,
2003
).
20.
G.
Rüdiger
,
L. L.
Kitchatinov
, and
R.
Hollerbach
,
Magnetic Processes in Astrophysics: Theory, Simulations, Experiments
(
Wiley-VCH
,
Berlin
,
2013
).
21.
M.
Gellert
,
G.
Rüdiger
, and
A.
Fournier
, “
Energy distribution in nonaxisymmetric magnetic Taylor-Couette flow
,”
Astron. Nachr.
328
,
1162
1165
(
2007
).
22.
A.
Fournier
,
H. P.
Bunge
,
R.
Hollerbach
, and
J.-P.
Vilotte
, “
A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers
,”
J. Comput. Phys.
204
,
462
489
(
2005
).
23.
S.
Chandrasekhar
, “
On the stability of the simplest solution of the equations of hydromagnetics
,”
Proc. Natl. Acad. Sci. U. S. A.
42
,
273
276
(
1956
).
24.
G.
Rüdiger
,
M.
Schultz
,
F.
Stefani
, and
M.
Mond
, “
Diffusive MHD instabilities: Beyond the Chandrasekhar theorem
,”
Astrophys. J.
811
,
84
(
2015
).
25.
D. J.
Acheson
and
M. P.
Gibbons
, “
Appendix. The axisymmetric diffusive instability of toroidal magnetic fields in a rotating gas
,”
Philos. Trans. R. Soc., A
289
,
495
500
(
1978
).
26.
V. P.
Lakhin
and
E. P.
Velikhov
, “
Instabilities of highly-resistive rotating liquids in helical magnetic fields
,”
Phys. Lett. A
369
,
98
106
(
2007
).
27.
L. J.
Silvers
,
G. M.
Vasil
,
N. H.
Brummell
, and
M. R. E.
Proctor
, “
Double-diffusive instabilities of a shear-generated magnetic layer
,”
Astrophys. J.
702
,
L14
L18
(
2009
).
28.
O.
Kirillov
,
F.
Stefani
, and
Y.
Fukumoto
, “
Local instabilities in magnetized rotational flows: A short-wavelength approach
,”
J. Fluid Mech.
760
,
591
633
(
2014
).
You do not currently have access to this content.