Streaks and hairpin-vortices are experimentally generated in a laminar plane Poiseuille crossflow by injecting a continuous jet through a streamwise slot normal to the crossflow, with air as the working media. Small disturbances form stable streaks, however, higher disturbances cause the formation of streaks which undergo instability leading to the generation of hairpin vortices. Particular emphasis is placed on the flow conditions close to the generation of hairpin-vortices. Measurements are carried out in the cases of natural and phase-locked disturbance employing smoke visualisation, particle image velocimetry, and hot-wire anemometry, which include, the dominant frequency, wavelength, and the disturbance shape (or eigenfunctions) associated with the coherent part of the velocity field. A linear stability analysis for both one- and two-dimensional base-flows is carried out to understand the mechanism of instability and good agreement of wavelength and eigenfunctions are obtained when compared to the experimental data, and a slight under-prediction of the growth-rates by the linear stability analysis consistent with the final nonlinear stages in transitional flows. Furthermore, an energy analysis for both the temporal and spatial stability analysis revels the dominance of the symmetric varicose mode, again, in agreement with the experiments, which is found to be governed by the balance of the wallnormal shear and dissipative effects rather than the spanwise shear. In all cases the anti-symmetric sinuous modes governed by the spanwise shear are found to be damped both in analysis and in our experiments.

1.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
2.
S. K.
Robinson
, “
Coherent motions in the turbulent boundary layers
,”
Annu. Rev. Fluid Mech.
23
,
601
639
(
1991
).
3.
R. L.
Panton
,
Self-Sustaining Mechanisms of Wall Turbulence
(
Computational Mechanics Publications
,
Southampton
,
1997
).
4.
P. S.
Klebanoff
,
K. D.
Tidstrom
, and
L. M.
Sargent
, “
The three-dimensional nature of boundary layer instability
,”
J. Fluid Mech.
12
,
1
(
1962
).
5.
T.
Fric
and
A.
Roshko
, “
Vortical structure in the wake of a transverse jet
,”
J. Fluid Mech.
279
,
1
47
(
1994
).
6.
R. M.
Kelso
,
T.
Lim
, and
A.
Perry
, “
An experimental study of round jets in cross-flow
,”
J. Fluid Mech.
306
,
111
144
(
1996
).
7.
K.
Mahesh
, “
The interaction of jets with crossflow
,”
Annu. Rev. Fluid Mech.
45
,
379
407
(
2013
).
8.
S.
Megerian
,
J.
Davitian
,
L. D. B.
Alves
, and
A.
Karagozian
, “
Transverse-jet shear-layer instabilities. Part 1. Experimental studies
,”
J. Fluid Mech.
593
,
93
129
(
2007
).
9.
S.
Bagheri
,
P.
Schlatter
,
P. J.
Schmid
, and
D. S.
Henningson
, “
Global stability of a jet in crossflow
,”
J. Fluid Mech.
624
,
33
44
(
2009
).
10.
A. R.
Karagozian
, “
The jet in crossflow
,”
Phys. Fluids
26
,
101303
(
2014
).
11.
T.
Cambonie
and
J.-L.
Aider
, “
Transition scenario of the round jet in crossflow topology at low velocity ratios
,”
Phys. Fluids
26
,
084101
(
2014
).
12.
A.
Svizher
and
J.
Cohen
, “
Holographic particle image velocimetry measurements of hairpin vortices in a subcritical air channel flow
,”
Phys. Fluids
18
,
014105
(
2006
).
13.
J.
Philip
,
A.
Svizher
, and
J.
Cohen
, “
Scaling law for subcritical transition in plane Poiseuille flow
,”
Phys. Rev. Lett.
98
,
154502
(
2007
).
14.
G.
Lemoult
,
J.-L.
Aider
, and
J. E.
Wesfreid
, “
Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow
,”
Phys. Rev. E
85
,
025303
(
2012
).
15.
M. T.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
,
243
(
1980
).
16.
L. H.
Gustavsson
, “
Energy growth of three-dimensional disturbances in plane Poiseuille flow
,”
J. Fluid Mech.
224
,
241
(
1991
).
17.
M.
Matsubaray
and
P. H.
Alfredsson
, “
Disturbance growth in boundary layers subjected to free-stream turbulence
,”
J. Fluid Mech.
430
,
149
168
(
2001
).
18.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer-Verlag
,
New York
,
2001
).
19.
W.
Schoppa
and
F.
Hussain
, “
Coherent structure generation in near wall turbulence
,”
J. Fluid Mech.
453
,
57
108
(
2002
).
20.
S. I.
Chernyshenko
and
M. F.
Baig
, “
The mechanism of streak formation in near-wall turbulence
,”
J. Fluid Mech.
544
,
99
131
(
2004
).
21.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
22.
A. H.
Haidari
and
C. R.
Smith
, “
The generation and regeneration of single hairpin vortices
,”
J. Fluid Mech.
277
,
135
162
(
1994
).
23.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanism for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
397
,
353
396
(
1999
).
24.
V.
Suponitsky
,
J.
Cohen
, and
P. Z.
Bar-Yoseph
, “
The generation of streaks and hairpin vortices from a localized vortex embedded in unbounded uniform shear flow
,”
J. Fluid Mech.
535
,
65
100
(
2005
).
25.
E.
Malkiel
,
V.
Levinski
, and
J.
Cohen
, “
The evolution of a localized vortex disturbance in external shear flows. Part 2. Comparison with experiments in rotating shear flows
,”
J. Fluid Mech.
379
,
351
380
(
1999
).
26.
J.
Cohen
,
V.
Suponitsky
,
P. Z.
Bar-Yoseph
,
A.
Svizher
, and
J.
Philip
, “Localized disturbances and their relation to turbulent shear flows,” AIAA Paper 2006-3226, 2006.
27.
M.
Skote
,
J. H.
Haritonidis
, and
D. S.
Henningson
, “
Varicose instabilities in turbulent boundary layers
,”
Phys. Fluids
14
,
2309
2323
(
2002
).
28.
M.
Asai
,
M.
Minagawa
, and
M.
Nishioka
, “
The instability and breakdown of a near-wall low-speed streak
,”
J. Fluid Mech.
455
,
289
314
(
2002
).
29.
M.
Karp
and
J.
Cohen
, “
Tracking stages of transition in Couette flow analytically
,”
J. Fluid Mech.
748
,
896
931
(
2014
).
30.
P.
Schlatter
,
L.
Brandt
,
H. C.
de Lange
, and
D. S.
Henningson
, “
On streak breakdown in bypass transition
,”
Phys. Fluids
20
,
101505
(
2008
).
31.
O. Y.
Zikanov
, “
On the stability of pipe Poiseuille flow
,”
Phys. Fluids
8
,
2923
2932
(
1996
).
32.
A.
Meseguer
, “
Streak breakdown instability in pipe Poiseuille flow
,”
Phys. Fluids
15
,
1203
1213
(
2003
).
33.
J.
Philip
and
J.
Cohen
, “
Formation and decay of coherent structures in pipe flow
,”
J. Fluid Mech.
655
,
258
279
(
2010
).
34.
P.
Elofsson
,
M.
Kawakami
, and
P.
Alfredsson
, “
Experiments on the stability of streamwise streaks in plane Poiseuille flow
,”
Phys. Fluids
11
,
915
930
(
1999
).
35.
J.
Cohen
,
M.
Karp
, and
V.
Mehta
, “
A minimal flow-elements model for the generation of packets of hairpin vortices in shear flows
,”
J. Fluid Mech.
747
,
30
43
(
2014
).
36.
J.
Philip
, “
The relationship between streaks and hairpin vortices in subcritical wall bounded shear flows
,” Ph.D. thesis,
Technion–Israel Institute of Technology
,
2009
.
37.
D. S.
Park
and
P.
Huerre
, “
Primary and secondary instabilities of the asymptotic suction boundary layer on a curved plate
,”
J. Fluid Mech.
283
,
249
272
(
1995
).
38.
W.
Reynolds
and
A.
Hussain
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
,
263
288
(
1972
).
39.
M. T.
Landahl
, “
Wave mechanics of breakdown
,”
J. Fluid Mech.
56
,
775
(
1972
).
40.
C.
Cossu
and
L.
Brandt
, “
On Tollmien–Schlichting-like waves in streaky boundary layers
,”
Eur. J. Mech., B: Fluids
23
,
815
833
(
2004
).
41.
J. H.
Fransson
,
A.
Talamelli
,
L.
Brandt
, and
C.
Cossu
, “
Delaying transition to turbulence by a passive mechanism
,”
Phys. Rev. Lett.
96
,
064501
(
2006
).
42.
S. C.
Reddy
,
P. J.
Schmid
,
J. S.
Baggett
, and
D. S.
Henningson
, “
On stability of streamwise streaks and transition thresholds in plane channel flows
,”
J. Fluid Mech.
365
,
269
303
(
1998
).
You do not currently have access to this content.