Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

1.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
1198
(
2009
).
2.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M. G.
Velarde
,
Falling Liquid Films
(
Springer
,
2012
).
3.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
4.
C.
Pozrikidis
, “
The flow of a liquid film along a periodic wall
,”
J. Fluid Mech.
188
,
275
300
(
1988
).
5.
P. H.
Gaskell
,
P. K.
Jimack
,
M.
Sellier
,
H. M.
Thompson
, and
M. C. T.
Wilson
, “
Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography
,”
J. Fluid Mech.
509
,
253
280
(
2004
).
6.
D.
Tseluiko
,
M. G.
Blyth
, and
D. T.
Papageorgiou
, “
Stability of film flow over inclined topography based on a long-wave nonlinear model
,”
J. Fluid Mech.
729
,
638
671
(
2013
).
7.
C.
Heining
and
N.
Aksel
, “
Bottom reconstruction in thin-film over topography: Steady solution and linear stability
,”
Phys. Fluids
21
,
083605
(
2009
).
8.
T.
Pollak
and
N.
Aksel
, “
Crucial flow stabilization and multiple instability branches of gravity-driven films over topography
,”
Phys. Fluids
25
,
024103
(
2013
).
9.
M.
Schörner
,
D.
Reck
, and
N.
Aksel
, “
Does the topography’s specific shape matter in general for the stability of film flows?
,”
Phys. Fluids
27
,
042103
(
2015
).
10.
S. G.
Bankoff
, “
Stability of liquid flow down a heated inclined plane
,”
Int. J. Heat Mass Transfer
14
,
377
385
(
1971
).
11.
B.
Scheid
,
A.
Oron
,
P.
Colinet
,
U.
Thiele
, and
J. C.
Legros
, “
Nonlinear evolution of nonuniformly heated falling liquid films
,”
Phys. Fluids
14
,
4130
(
2002
).
12.
M. G.
Blyth
and
A. P.
Bassom
, “
Flow of a liquid layer over heated topography
,”
Proc. R. Soc. A
468
,
4067
4087
(
2012
).
13.
R.
Gharraei
,
M.
Hemayatkhah
,
S. B.
Islami
, and
E.
Esmaeilzadeh
, “
An experimental investigation on the developing wavy falling film in the presence of electrohydrodynamic conduction phenomenon
,”
Exp. Therm. Fluid Sci.
60
,
35
44
(
2015
).
14.
D.
Tseluiko
,
M. G.
Blyth
,
D. T.
Papageorgiou
, and
J.-M.
Vanden-Broeck
, “
Electrified viscous thin film flow over topography
,”
J. Fluid Mech.
597
,
449
475
(
2008
).
15.
D.
Tseluiko
,
M. G.
Blyth
,
D. T.
Papageorgiou
, and
J.-M.
Vanden-Broeck
, “
Effect of an electric field on film flow down a corrugated wall at zero Reynolds number
,”
Phys. Fluids
20
,
042103
(
2008
).
16.
D.
Tseluiko
and
D. T.
Papageorgiou
, “
Wave evolution on electrified falling films
,”
J. Fluid Mech.
556
,
361
386
(
2006
).
17.
S.
Veremieiev
,
H. M.
Thompson
,
M.
Scholle
,
Y. C.
Lee
, and
P. H.
Gaskell
, “
Electrified thin film flow at finite Reynolds number on planar substrates featuring topography
,”
Int. J. Multiphase Flow
44
,
48
69
(
2012
).
18.
S. K.
Kalpathy
,
L. F.
Francis
, and
S.
Kumar
, “
Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces
,”
J. Colloid Interface Sci.
408
,
212
219
(
2013
).
19.
M. G.
Blyth
and
C.
Pozrikidis
, “
Effect of surfactant on the stability of film flow down an inclined plane
,”
J. Fluid Mech.
521
,
241
250
(
2004
).
20.
U.
Thiele
,
B.
Goyeau
, and
M. G.
Velarde
, “
Stability analysis of thin film flow along a heated porous wall
,”
Phys. Fluids
21
,
014103
(
2009
).
21.
K. A.
Ogden
,
S. J. D.
D’Alessio
, and
J. P.
Pascal
, “
Gravity-driven flow over heated, porous, wavy surfaces
,”
Phys. Fluids
23
,
122102
(
2011
).
22.
Gaurav
and
V.
Shankar
, “
Stability of gravity-driven free-surface flow past a deformable solid at zero and finite Reynolds number
,”
Phys. Fluids
19
,
024105
(
2007
).
23.
A. B.
Thompson
,
D.
Tseluiko
, and
D. T.
Papageorgiou
, “
Falling liquid films with blowing and suction
,”
J. Fluid Mech.
787
,
292
330
(
2016
).
24.
M.
Amaouche
,
H.
Ait Abderrahmane
, and
L.
Bourdache
, “
Hydromagnetic thin film flow: Linear stability
,”
Phys. Rev. E
88
,
023028
(
2013
).
25.
J.
Liu
and
J. P.
Gollub
, “
Onset of spatially chaotic waves on flowing films
,”
Phys. Rev. Lett.
70
,
2289
2292
(
1993
).
26.
M.
Vlachogiannis
and
V.
Bontozoglou
, “
Experiments on laminar film flow along a periodic wall
,”
J. Fluid Mech.
457
,
133
156
(
2002
).
27.
C.
Heining
,
T.
Pollak
, and
M.
Sellier
, “
Flow domain identification from free surface velocity in thin inertial films
,”
J. Fluid Mech.
720
,
338
356
(
2013
).
28.
E.
Momoniat
,
R.
Ravindran
, and
S.
Roy
, “
The influence of slot injection/suction on the spreading of a thin film under gravity and surface tension
,”
Acta Mech.
211
,
61
71
(
2010
).
29.
S. H.
Davis
and
L. M.
Hocking
, “
Spreading and imbibition of viscous liquid on a porous base. II
,”
Phys. Fluids
12
,
1646
1655
(
2000
).
30.
L. W.
Schwartz
and
E. E.
Michaelides
, “
Gravity flow of a viscous liquid down a slope with injection
,”
Phys. Fluids
31
,
2739
2741
(
1988
).
31.
J.
Zabczyk
,
Mathematical Control Theory: An Introduction
(
Birkhäuser
,
1992
).
32.
R. O.
Grigoriev
, “
Contact line instability and pattern selection in thermally driven liquid films
,”
Phys. Fluids
15
,
1363
1374
(
2003
).
33.
P. D.
Christofides
, “
Feedback control of the Kuramoto-Sivashinsky equation
,” in
Proceedings of the 37th IEEE Conference on Decision and Control
(
IEEE
,
1998
), pp.
4646
4651
.
34.
S. N.
Gomes
,
D. T.
Papageorgiou
, and
G. A.
Pavliotis
, “
Stabilising nontrivial solutions of the generalised Kuramoto-Sivashinsky equation using feedback and optimal control
,”
IMA J. Appl. Math.
(unpublished); preprint arXiv:1505.06086.
35.
A.
Armaou
and
P. D.
Christofides
, “
Feedback control of the Kuramoto-Sivashinsky equation
,”
Physica D
137
,
49
61
(
2000
).
36.
A.
Armaou
and
P. D.
Christofides
, “
Wave suppression by nonlinear finite-dimensional control
,”
Chem. Eng. Sci.
55
,
2627
2640
(
2000
).
37.
Y.
Lou
and
P. D.
Christofides
, “
Optimal actuator/sensor placement for nonlinear control of the Kuramoto-Sivashinsky equation
,”
IEEE Trans. Control Syst. Technol.
11
,
737
745
(
2003
).
38.
A.
Farhat
,
E.
Lunasin
, and
E. S.
Titi
, “
Abridged continuous data assimilation for the 2D Navier-Stokes equations utilizing measurements of only one component of the velocity field
,”
J. Math Fluid Dynamics
(to be published); e-print arXiv:1504.05978 (
2015
).
39.
T.
Shlang
and
G. I.
Sivashinsky
, “
Irregular flow of a liquid film down a vertical column
,”
J. Phys. (France)
43
,
459
466
(
1982
).
40.
G. I.
Sivashinsky
and
D. M.
Michelson
, “
On irregular wavy flow of a liquid film down a vertical plane
,”
Prog. Theor. Phys.
63
,
2112
2114
(
1980
).
41.
E.
Tadmor
, “
The well-posedness of the Kuramoto-Sivashinsky equation
,”
SIAM J. Math. Anal.
17
,
884
893
(
1986
).
42.
P.
Constantin
,
C.
Foias
,
B.
Nicolaenko
, and
R.
Temam
,
Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations
(
Springer
,
New York
,
1989
).
43.
F.
Otto
, “
Optimal bounds on the Kuramoto-Sivashinsky equation
,”
J. Funct. Anal.
257
,
2188
2245
(
2009
).
44.
A.
Pumir
,
P.
Manneville
, and
Y.
Pomeau
, “
On solitary waves running down an inclined plane
,”
J. Fluid Mech.
135
,
27
50
(
1983
).
45.
W.
Nusselt
, “
Der Wärmeaustausch und Berieselungskühler
,”
Z. Ver. Deut. Indr.
67
,
206
210
(
1923
).
46.
D. J.
Benney
, “
Long waves on liquid films
,”
J. Math. Phys.
45
,
150
155
(
1966
).
47.
C.
Ruyer-Quil
and
P.
Manneville
, “
Improved modeling of flows down inclined planes
,”
Eur. Phys. J. B
15
,
357
369
(
2000
).
48.
T. B.
Benjamin
, “
Wave formation in laminar flow down an inclined plane
,”
J. Fluid Mech.
2
,
554
573
(
1957
).
49.
C.-S.
Yih
, “
Stability of liquid flow down an inclined plane
,”
Phys. Fluids
6
,
321
334
(
1963
).
50.
J. M.
Floryan
,
S. H.
Davis
, and
R. E.
Kelly
, “
Instabilities of a liquid film flowing down a slightly inclined plane
,”
Phys. Fluids
30
,
983
(
1987
).
51.
E. J.
Doedel
and
B. E.
Oldman
, AUTO-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University, documentation and source code available at http://cmvl.cs.concordia.ca/auto/, 2009.
52.
P.
Kokotovic
,
H. K.
Khalil
, and
J.
O’Reilly
,
Singular Perturbation Methods in Control: Analysis and Design
(
Academic Press
,
1986
).
53.
A.
Oron
and
O.
Gottlieb
, “
Subcritical and supercritical bifurcations of the first- and second-order Benney equations
,”
J. Eng. Math.
50
,
121
140
(
2004
).
54.
S. N.
Gomes
,
M.
Pradas
,
S.
Kalliadasis
,
D. T.
Papageorgiou
, and
G. A.
Pavliotis
, “
Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems
,”
Phys. Rev. E
92
,
022912
(
2015
).
55.
M.
Vlachogiannis
,
A.
Samandas
,
V.
Leontidis
, and
V.
Bontozoglou
, “
Effect of channel width on the primary instability of inclined film flow
,”
Phys. Fluids
22
,
012106
(
2010
).
56.
T.
Pollak
,
A.
Haas
, and
N.
Aksel
, “
Side wall effects on the instability of thin gravity-driven films—From long-wave to short-wave instability
,”
Phys. Fluids
23
,
094110
(
2011
).
57.
See supplementary material at http://dx.doi.org/10.1063/1.4938761 for access to the data shown in the figures.

Supplementary Material

You do not currently have access to this content.