The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels.

1.
E. A.
Gaffney
,
H.
Gadelha
,
D. J.
Smith
,
J. R.
Blake
, and
J. C.
Kirkman-Brown
, “
Mammalian sperm motility: Observation and theory
,”
Annu. Rev. Fluid Mech.
43
,
501
528
(
2011
).
2.
R. B.
Kimsey
and
A.
Spielman
, “
Motility of Lyme disease spirochetes in fluids as viscous as the extracellular matrix
,”
J. Infect. Dis.
162
,
1205
1208
(
1990
).
3.
M. W.
Harman
,
S. M.
Dunham-Ems
,
M. J.
Caimano
,
A. A.
Belperron
,
L. K.
Bockenstedt
,
H.
Fu
,
J. D.
Radolf
, and
C. W.
Wolgemuth
, “
The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
3059
3064
(
2012
).
4.
C.
Fang-Yen
,
M.
Wyart
,
J.
Xie
,
R.
Kawai
,
T.
Kodger
,
S.
Chen
,
Q.
Wen
, and
A. D. T.
Samuel
, “
Biomechanical analysis of gait and adaptation in the nematode caenorhabditis elegans
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
20323
20328
(
2010
).
5.
G.
Taylor
, “
Analysis of the swimming of microscopic organisms
,”
Proc. R. Soc. A
209
,
447
461
(
1951
).
6.
E.
Lauga
, “
Propulsion in a viscoelastic fluid
,”
Phys. Fluids
19
,
083104
(
2007
).
7.
J.
Teran
,
L.
Fauci
, and
M.
Shelley
, “
Viscoelastic fluid response can increase the speed and efficiency of a free swimmer
,”
Phys. Rev. Lett.
104
,
038101
(
2010
).
8.
X.
Shen
and
P. E.
Arratia
, “
Undulatory swimming in viscoelastic fluids
,”
Phys. Rev. Lett.
106
,
208101
(
2011
).
9.
B.
Liu
,
T. R.
Powers
, and
K. S.
Breuer
, “
Force-free swimming of a model helical flagellum in viscoelastic fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
19516
19520
(
2011
).
10.
F. A.
Godinez
,
L.
Koens
,
T. D.
Montenegro-Johnson
,
R.
Zenit
, and
E.
Lauga
, “
Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner
,”
Exp. Fluids
56
,
97
(
2015
).
11.
M.
Doi
and
A.
Onuki
, “
Dynamic coupling between stress and composition in polymer solutions and blends
,”
J. Phys. II
2
,
1631
1656
(
1992
).
12.
H.
Tanaka
, “
Viscoelastic phase separation
,”
J. Phys.: Condens. Matter
12
,
R207
R264
(
2000
).
13.
W.
Alt
and
M.
Dembo
, “
Cytoplasm dynamics and cell motion: Two-phase flow models
,”
Math. Biosci.
156
,
207
228
(
1999
).
14.
N. G.
Cogan
and
R. D.
Guy
, “
Multiphase flow models of biogels from crawling cells to bacterial biofilms
,”
HFSP J.
4
,
11
25
(
2010
).
15.
J.
Du
,
J. P.
Keener
,
R. D.
Guy
, and
A. L.
Fogelson
, “
Low Reynolds number swimming in viscous two-phase fluids
,”
Phys. Rev. E
85
,
036304
(
2012
).
16.
D. A.
Drew
and
L. A.
Segel
, “
Analysis of fluidized beds and foams using averaged equations
,”
Stud. Appl. Math.
50
,
233
257
(
1971
).
17.
C. W.
Wolgemuth
, “
Collective swimming and the dynamics of bacterial turbulence
,”
Biophys. J.
95
,
1564
1574
(
2010
).
18.
C. W.
Wolgemuth
, “
Biomechanics of cell motility
,” in
Comprehensive Biophysics
, edited by
E. H.
Egelman
,
Cell Biophysics, Denis Wirtz
Vol.
7
(
Oxford, Academic Press
,
2012
), pp.
168
193
.
19.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Martinus Nijhoff Publishers, The Hague
,
1983
).
20.
M. A.
Meyers
and
K. K.
Chawla
,
Mechanical Behavior of Materials
(
Cambridge University Press
,
2009
).
21.
A.-K.
Tornberg
and
M. J.
Shelley
, “
Simulating the dynamics and interactions of flexible fibers in stokes flows
,”
J. Comput. Phys.
196
,
8
40
(
2004
).
22.
H. C.
Fu
,
V. B.
Shenoy
, and
T. R.
Powers
, “
Low Reynolds number swimming in gels
,”
EPL
91
,
24002
(
2010
).
23.
S.
Lim
and
C. S.
Peskin
, “
Simulations of the whirling instability by the immersed boundary method
,”
SIAM J. Sci. Comput.
25
,
2066
2083
(
2004
).
24.
D. L.
Brown
,
R.
Cortez
, and
M. L.
Minion
, “
Accurate projection methods for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
168
,
464
499
(
2001
).
25.
P.
Lee
,
B. E.
Griffith
, and
C. S.
Peskin
, “
The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement
,”
J. Comput. Phys.
229
,
5208
5227
(
2010
).
26.
S.
Balay
,
S.
Abhyankar
,
M. F.
Adams
,
J.
Brown
,
P.
Brune
,
K.
Buschelman
,
L.
Dalcin
,
V.
Eijkhout
,
W. D.
Gropp
,
D.
Kaushik
,
M. G.
Knepley
,
L. C.
McInnes
,
K.
Rupp
,
B. F.
Smith
,
S.
Zampini
, and
H.
Zhang
, PETSc Web page, http://www.mcs.anl.gov/petsc (
2015
).
27.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
28.
L. J.
Fauci
and
C. S.
Peskin
, “
A computational model of aquatic animal locomotion
,”
J. Comput. Phys.
77
,
85
108
(
1988
).
29.
C. W.
Wolgemuth
,
A.
Mogilner
, and
G.
Oster
, “
The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery
,”
Eur. Biophys. J.
33
,
146
158
(
2004
).
30.
B.
Thomases
and
R. D.
Guy
, “
Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids
,”
Phys. Rev. Lett.
113
,
098102
(
2014
).
31.
Y.-N.
Young
and
M. J.
Shelley
, “
Stretch-coil transition and transport of fibers in cellular flows
,”
Phys. Rev. Lett.
99
,
058303
(
2007
).
32.
H. C.
Fu
,
T. R.
Powers
, and
C. W.
Wolgemuth
, “
Theory of swimming filaments in viscoelastic media
,”
Phys. Rev. Lett.
99
,
258101
(
2007
).
You do not currently have access to this content.