We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and Bradshaw [“Compressible turbulent channel flows: DNS results and modelling,” J. Fluid Mech. 305, 185–218 (1995)]. Second, direct numerical simulations (DNS) of turbulent channel flows with different constitutive relations for density and viscosity are performed to assess and validate the semi-local scaling for turbulent statistics. The DNS database is obtained by solving the low-Mach number approximation of the Navier-Stokes equation. Finally, we quantify the modulation of turbulence due to changes in fluid properties. In the simulations, the fluid is internally heated and the temperature at both channel walls is fixed, such that the friction Reynolds number based on wall quantities is Reτ = 395 for all cases investigated. We show that for a case with variable density ρ and viscosity μ, but constant semi-local Reynolds number R e τ ( ρ ¯ / ρ w ) / ( μ ¯ / μ w ) R e τ (where bar and subscript w, denote Reynolds averaging and averaged wall quantity, respectively), across the whole channel height, the turbulent statistics exhibit quasi-similarity with constant property turbulent flows. For cases where R e τ R e τ across the channel, we found that quasi-similarity is maintained for cases with similar R e τ distributions, even if their individual mean density and viscosity profiles substantially differ. With a decrease of R e τ towards the channel center ( R e τ < R e τ ), we show that the anisotropy increases and the pre-multiplied stream-wise spectra reveal that this increase is associated with strengthening of the large scale streaks in the buffer layer. The opposite effect is observed when R e τ increases towards the channel center. The present results provide an effective framework for categorizing turbulence modulation in wall-bounded flows with variable property effects, and can be applied to any Newtonian fluid that is heated or cooled.

1.
P. G.
Huang
,
G. N.
Coleman
, and
P.
Bradshaw
, “
Compressible turbulent channel flows: DNS results and modelling
,”
J. Fluid Mech.
305
,
185
218
(
1995
).
2.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Re = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
3.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
4.
M.
Bernardini
,
S.
Pirozzoli
, and
P.
Orlandi
, “
Velocity statistics in turbulent channel flow up to Reτ = 4000
,”
J. Fluid Mech.
742
,
171
191
(
2014
).
5.
J. F.
Morrison
,
B. J.
McKeon
,
W.
Jiang
, and
A. J.
Smits
, “
Scaling of the streamwise velocity component in turbulent pipe flow
,”
J. Fluid Mech.
508
,
99
131
(
2004
).
6.
N.
Hutchins
and
I.
Marusic
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc., A
365
,
647
664
(
2007
).
7.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
High Reynolds number effects in wall turbulence
,”
Int. J. Heat Fluid Flow
31
,
418
428
(
2010
).
8.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
Predictive model for wall-bounded turbulent flow
,”
Science
329
,
193
196
(
2010
).
9.
A. J.
Smits
, “
Turbulent boundary-layer structure in supersonic flow
,”
Philos. Trans. R. Soc., A
336
,
81
93
(
1991
).
10.
G. N.
Coleman
,
J.
Kim
, and
R. D.
Moser
, “
A numerical study of turbulent supersonic isothermal-wall channel flow
,”
J. Fluid Mech.
305
,
159
183
(
1995
).
11.
L.
Duan
,
I.
Beekman
, and
M. P.
Martin
, “
Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
,”
J. Fluid Mech.
655
,
419
445
(
2010
).
12.
M.
Lagha
,
J.
Kim
,
J.
Eldredge
, and
X.
Zhong
, “
A numerical study of compressible turbulent boundary layers
,”
Phys. Fluids
23
,
015106
(
2011
).
13.
Y.
Morinishi
,
S.
Tamano
, and
K.
Nakabayashi
, “
Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls
,”
J. Fluid Mech.
502
,
273
308
(
2004
).
14.
F.
Nicoud
and
T.
Poinsot
, “
Dns of a channel flow with variable properties
,” in
International Symposium on Turbulence and Shear Flow Phenomena (TSFP-1)
(
Begell House
,
Santa Barbara, USA
,
1999
), pp.
697
702
.
15.
H.
Foysi
,
S.
Sarkar
, and
R.
Friedrich
, “
Compressibility effects and turbulence scalings in supersonic channel flow
,”
J. Fluid Mech.
509
,
207
216
(
2004
).
16.
J.
Kim
and
P.
Moin
, “
Transport of passive scalars in a turbulent channel flow
,” in
Turbulent Shear Flows
(
Springer
,
1989
), Vol.
6
, pp.
85
96
.
17.
R.
Lechner
,
J.
Sesterhenn
, and
R.
Friedrich
, “
Turbulent supersonic channel flow
,”
J. Turbul.
2
,
1
25
(
2001
).
18.
S. E.
Guarini
,
R. D.
Moser
,
K.
Shariff
, and
A.
Wray
, “
Direct numerical simulation of a supersonic turbulent boundary layer at mach 2.5
,”
J. Fluid Mech.
414
,
1
33
(
2000
).
19.
T.
Maeder
,
N. A.
Adams
, and
L.
Kleiser
, “
Direct simulation of turbulent supersonic boundary layers by an extended temporal approach
,”
J. Fluid Mech.
429
,
187
216
(
2001
).
20.
S.
Pirozzoli
,
F.
Grasso
, and
T.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at m= 2.25
,”
Phys. Fluids
16
,
530
545
(
2004
).
21.
A. J.
Smits
and
J.-P.
Dussauge
,
Turbulent Shear Layers in Supersonic Flow
(
Springer Science & Business Media
,
2006
).
22.
A.
Majda
and
J.
Sethian
, “
The derivation and numerical solution of the equations for zero mach number combustion
,”
Combust. Sci. Technol.
42
,
185
205
(
1985
).
23.
H.
Nemati
,
A.
Patel
,
B. J.
Boersma
, and
R.
Pecnik
, “
Mean statistics of a heated turbulent pipe flow at supercritical pressure
,”
Int. J. Heat Mass Transfer
83
,
741
752
(
2015
).
24.
F.
Nicoud
, “
Conservative high-order finite-difference schemes for low-mach number flows
,”
J. Comput. Phys.
158
,
71
97
(
2000
).
25.
F.
Zonta
,
C.
Marchioli
, and
A.
Soldati
, “
Modulation of turbulence in forced convection by temperature-dependent viscosity
,”
J. Fluid Mech.
697
,
150
174
(
2012
).
26.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
27.
B. J.
Boersma
, “
A 6th order staggered compact finite difference method for the incompressible Navier–Stokes and scalar transport equations
,”
J. Comput. Phys.
230
,
4940
4954
(
2011
).
28.
Y.
Morinishi
, “
Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows
,”
J. Comput. Phys.
229
,
276
300
(
2010
).
29.
P. A.
McMurtry
,
W.-H.
Jou
,
J.
Riley
, and
R.
Metcalfe
, “
Direct numerical simulations of a reacting mixing layer with chemical heat release
,”
AIAA J.
24
,
962
970
(
1986
).
30.
P.
Bradshaw
, “
Compressible turbulent shear layers
,”
Annu. Rev. Fluid Mech.
9
,
33
52
(
1977
).
31.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
32.
K.
Iwamoto
,
Y.
Suzuki
, and
N.
Kasagi
, “
Reynolds number effect on wall turbulence: Toward effective feedback control
,”
Int. J. Heat Fluid Flow
23
,
678
689
(
2002
).
You do not currently have access to this content.