The undulatory swimming dynamics of the millimetric nematode Caenorhabditis elegans was investigated in fluids with different viscosities. The technique of micropipette deflection was used to directly measure the drag forces experienced by the swimming worm in both the lateral and propulsive directions. Gait modulation due to increasing viscosity in our tethered system was found to be qualitatively similar to that of freely swimming worms. Resistive force theory was used to determine the drag coefficients of the slender swimmer, and the experimental values were compared to the classical theories of Lighthill as well as Gray and Hancock. The gait modulation was shown to be independent of how the environmental resistance is changed, indicating the relevance of only the fluid resistance on the swimming kinematics and dynamics of the nematode.

1.
E.
Lauga
, “
The bearable gooeyness of swimming
,”
J. Fluid Mech.
762
,
1
4
(
2014
).
2.
E.
Niebur
and
P.
Erdõs
, “
Theory of the locomotion of nematodes: Dynamics of undulatory progression on a surface
,”
Biophys. J.
60
,
1132
1146
(
1991
).
3.
Z. V.
Guo
and
L.
Mahadevan
, “
Limbless undulatory propulsion on land
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
3179
3184
(
2008
).
4.
D. L.
Hu
,
J.
Nirody
,
T.
Scott
, and
M. J.
Shelley
, “
The mechanics of slithering locomotion
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
10081
10085
(
2009
).
5.
C.
Fang-Yen
,
M.
Wyart
,
J.
Xie
,
R.
Kawai
,
T.
Kodger
,
S.
Chen
,
Q.
Wen
, and
A. D. T.
Samuel
, “
Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
20323
20328
(
2010
).
6.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
814
(
1955
), see http://jeb.biologists.org/content/32/4/802.abstract.
7.
R. D.
Maladen
,
Y.
Ding
,
C.
Li
, and
D. I.
Goldman
, “
Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard
,”
Science
325
,
314
317
(
2009
).
8.
Y.
Ding
,
S. S.
Sharpe
,
A.
Masse
, and
D. I.
Goldman
, “
Mechanics of undulatory swimming in a frictional fluid
,”
PLoS Comput. Biol.
8
,
e1002810
(
2012
).
9.
S.
Berri
,
J. H.
Boyle
,
M.
Tassieri
,
I. A.
Hope
, and
N.
Cohen
, “
Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait
,”
HFSP J.
3
,
186
193
(
2009
).
10.
J. T.
Pierce-Shimomura
,
B. L.
Chen
,
J. J.
Mun
,
R.
Ho
,
R.
Sarkis
, and
S. L.
McIntire
, “
Genetic analysis of crawling and swimming locomotory patterns in C. elegans
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
20982
20987
(
2008
).
11.
J. H.
Boyle
,
S.
Berri
,
M.
Tassieri
,
I. A.
Hope
, and
N.
Cohen
, “
Gait modulation in C. elegans: It’s not a choice, it’s a reflex!
,”
Front. Behav. Neurosci.
5
,
10
(
2011
).
12.
J. H.
Boyle
,
S.
Berri
, and
N.
Cohen
, “
Gait modulation in C. elegans: An integrated neuromechanical model
,”
Front. Comput. Neurosci.
6
,
10
(
2012
).
13.
B.
Wood
,
The Nematode Caenorhabditis Elegans
(
Cold Spring Harbor Laboratory Press
,
New York
,
1988
).
14.
J.
Sznitman
,
X.
Shen
,
P. K.
Purohit
, and
P. E.
Arratia
, “
The effects of fluid viscosity on the kinematics and material properties of C. elegans swimming at low Reynolds number
,”
Exp. Mech.
50
,
1303
1311
(
2010
).
15.
J.
Sznitman
,
X.
Shen
,
R.
Sznitman
, and
P. E.
Arratia
, “
Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number
,”
Phys. Fluids
22
,
121901
(
2010
).
16.
J.
Yuan
,
D. M.
Raizen
, and
H. H.
Bau
, “
Gait synchronization in Caenorhabditis elegans
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
6865
6870
(
2014
).
17.
J.
Yuan
,
D. M.
Raizen
, and
H. H.
Bau
, “
Propensity of undulatory swimmers, such as worms, to go against the flow
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
3606
3611
(
2015
).
18.
M.
Backholm
,
W. S.
Ryu
, and
K.
Dalnoki-Veress
, “
Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
4528
4533
(
2013
).
19.
M.
Backholm
,
W. S.
Ryu
, and
K.
Dalnoki-Veress
, “
The nematode C. elegans as a complex viscoelastic fluid
,”
Eur. Phys. J. E
38
,
36
(
2015
).
20.
R. D.
Schulman
,
M.
Backholm
,
W. S.
Ryu
, and
K.
Dalnoki-Veress
, “
Dynamic force patterns of an undulatory microswimmer
,”
Phys. Rev. E
89
,
050701
(
2014
).
21.
Y.
Rabets
,
M.
Backholm
,
K.
Dalnoki-Veress
, and
W. S.
Ryu
, “
Direct measurements of drag forces in C. elegans crawling locomotion
,”
Biophys. J.
107
,
1980
1987
(
2014
).
22.
M.
Backholm
,
R. D.
Schulman
,
W. S.
Ryu
, and
K.
Dalnoki-Veress
, “
Tangling of tethered swimmers: Interactions between two nematodes
,”
Phys. Rev. Lett.
113
,
138101
(
2014
).
23.
R. D.
Schulman
,
M.
Backholm
,
W. S.
Ryu
, and
K.
Dalnoki-Veress
, “
Undulatory microswimming near solid boundaries
,”
Phys. Fluids
26
,
101902
(
2014
).
24.
N.
Cohen
and
J. H.
Boyle
, “
Swimming at low Reynolds number: A beginners guide to undulatory locomotion
,”
Contemp. Phys.
51
,
103
123
(
2010
).
25.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
26.
J.
Lighthill
, “
Flagellar hydrodynamics–The John von Neumann lecture, 1975
,”
SIAM Rev.
18
,
161
230
(
1976
).
27.
J.
Gray
and
H. W.
Lissmann
, “
The locomotion of nematodes
,”
J. Exp. Biol.
41
,
135
154
(
1964
), see http://jeb.biologists.org/content/41/1/135.
28.
J.
Gray
, “
Undulatory propulsion
,”
Q. J. Microsc. Sci.
94
,
551
578
(
1953
), see http://jcs.biologists.org/content/s3-94/28/551.
29.
J.
Sznitman
,
P. K.
Purohit
,
P.
Krajacic
,
T.
Lamitina
, and
P. E.
Arratia
, “
Material properties of Caenorhabditis elegans swimming at low Reynolds number
,”
Biophys. J.
98
,
617
626
(
2010
).
30.
B.
Friedrich
,
I.
Riedel-Kruse
,
J.
Howard
, and
F.
Jülicher
, “
High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory
,”
J. Exp. Biol.
213
,
1226
1234
(
2010
).
31.
P.
Bayly
,
B.
Lewis
,
E.
Ranz
,
R.
Okamoto
,
R.
Pless
, and
S.
Dutcher
, “
Propulsive forces on the flagellum during locomotion of Chlamydomonas reinhardtii
,”
Biophys. J.
100
,
2716
2725
(
2011
).
32.
B.
Rodenborn
,
C.-H.
Chen
,
H. L.
Swinney
,
B.
Liu
, and
H. P.
Zhang
, “
Propulsion of microorganisms by a helical flagellum
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
E338
E347
(
2013
).
33.
J.
Korta
,
D. A.
Clark
,
C. V.
Gabel
,
L.
Mahadevan
, and
A. D. T.
Samuel
, “
Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans
,”
J. Exp. Biol.
210
,
2383
2389
(
2007
).
34.
S.
Brenner
, “
The genetics of Caenorhabditis elegans
,”
Genetics
77
,
71
94
(
1974
), see http://www.genetics.org/content/77/1/71.abstract.
35.
See supplementary material at http://dx.doi.org/10.1063/1.4931795 for information about the RFT fits performed with a free drag coefficient ratio, for movies of a worm swimming in different viscosities, and for a graph of the power output as a function of fluid viscosity.
36.
P.
Gonzalez-Tello
,
F.
Camacho
, and
G.
Blazquez
, “
Density and viscosity of concentrated aqueous solutions of Polyethylene Glycol
,”
J. Chem. Eng. Data
39
,
611
614
(
1994
).
37.
X. N.
Shen
and
P. E.
Arratia
, “
Undulatory swimming in viscoelastic fluids
,”
Phys. Rev. Lett.
106
,
208101
(
2011
).
38.
D. A.
Gagnon
,
N. C.
Keim
, and
P. E.
Arratia
, “
Undulatory swimming in shear-thinning fluids: Experiments with Caenorhabditis elegans
,”
J. Fluid Mech.
758
,
R3
(
2014
).

Supplementary Material

You do not currently have access to this content.