While it is understood that flexibility can improve the propulsive performance of flapping wings and fins, the flexibility distribution leading to optimal performance has not been explored. Using 2D small-amplitude theory and a fast Chebyshev method, we examine how thrust depends on the chord-wise distribution of wing stiffness. Through numerical optimization, we find that focusing flexibility at the wing’s front, e.g., through a torsional spring, maximizes thrust. A wing with an optimally chosen spring constant typically generates 36% more thrust than a wing of optimal uniform stiffness. These results may relate to material distributions found in nature, such as insect wings, and may apply to the design of biomimetic swimmers and flyers, such as ornithopters.

1.
H.
Tanaka
,
J. P.
Whitney
, and
R. J.
Wood
, “
Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight
,”
Integr. Comp. Biol.
51
,
142
(
2011
).
2.
J.
Song
,
H.
Luo
, and
T. L.
Hedrick
, “
Wing-pitching mechanism of hovering ruby-throated hummingbirds
,”
Bioinspiration Biomimetics
10
,
016007
(
2015
).
3.
S.
Alben
,
P. G.
Madden
, and
G. V.
Lauder
, “
The mechanics of active fin-shape control in ray-finned fishes
,”
J. R. Soc., Interface
4
,
243
256
(
2007
).
4.
S.
Alben
, “
Optimal flexibility of a flapping appendage in an inviscid fluid
,”
J. Fluid Mech.
614
,
355
380
(
2008
).
5.
K.
Shoele
and
Q.
Zhu
, “
Performance of a wing with nonuniform flexibility in hovering flight
,”
Phys. Fluids
25
,
041901
(
2013
).
6.
I. H.
Tuncer
and
M.
Kaya
, “
Optimization of flapping airfoils for maximum thrust and propulsive efficiency
,”
AIAA J.
43
,
2329
2336
(
2005
).
7.
Z.
Khan
,
K.
Steelman
, and
S.
Agrawal
, “
Development of insect thorax based flapping mechanism
,”
IEEE International Conference on Robotics and Automation
(
IEEE
,
2009
), pp.
3651
3656
.
8.
M. N. J.
Moore
, “
Analytical results on the role of flexibility in flapping propulsion
,”
J. Fluid Mech.
757
,
599
612
(
2014
).
9.
P.
Burgers
and
L. M.
Chiappe
, “
The wing of archaeopteryx as a primary thrust generator
,”
Nature
399
,
60
62
(
1999
).
10.
C. P.
Ellington
, “
The novel aerodynamics of insect flight: Applications to micro-air vehicles
,”
J. Exp. Biol.
202
,
3439
3448
(
1999
).
11.
M.
Sfakiotakis
,
D. M.
Lane
, and
J. B. C.
Davies
, “
Review of fish swimming modes for aquatic locomotion
,”
IEEE J. Oceanic Eng.
24
,
237
252
(
1999
).
12.
R.
Dudley
, “
Mechanisms and implications of animal flight maneuverability
,”
Integr. Comp. Biol.
42
,
135
140
(
2002
).
13.
P. J.
Van den Hout
,
K. J.
Mathot
,
L. R. M.
Maas
, and
T.
Piersma
, “
Predator escape tactics in birds: Linking ecology and aerodynamics
,”
Behav. Ecol.
21
,
16
25
(
2010
).
14.
G. K.
Taylor
,
R. L.
Nudds
, and
A. L. R.
Thomas
, “
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency
,”
Nature
425
,
707
711
(
2003
).
15.
V.
van Ginneken
,
E.
Antonissen
,
U. K.
Müller
,
R.
Booms
,
E.
Eding
,
J.
Verreth
, and
G.
van den Thillart
, “
Eel migration to the Sargasso: Remarkably high swimming efficiency and low energy costs
,”
J. Exp. Biol.
208
,
1329
1335
(
2005
).
16.
M. J.
Shelley
and
J.
Zhang
, “
Flapping and bending bodies interacting with fluid flows
,”
Annu. Rev. Fluid Mech.
43
,
449
465
(
2011
).
17.
T.
Wu
, “
Swimming of a waving plate
,”
J. Fluid Mech.
10
,
321
344
(
1961
).
18.
H.
Dai
,
H.
Luo
, and
J. F.
Doyle
, “
Dynamic pitching of an elastic rectangular wing in hovering motion
,”
J. Fluid Mech.
693
,
473
499
(
2012
).
19.
S. J.
Wright
and
J.
Nocedal
,
Numerical Optimization
(
Springer
,
New York
,
1999
), Vol.
2
.
20.
A. R.
Ennos
, “
The inertial cause of wing rotation in diptera
,”
J. Exp. Biol.
140
,
161
169
(
1988
).
21.
A. J.
Bergou
,
S.
Xu
, and
Z.
Wang
, “
Passive wing pitch reversal in insect flight
,”
J. Fluid Mech.
591
,
321
337
(
2007
).
22.
A. J.
Bergou
,
L.
Ristroph
,
J.
Guckenheimer
,
I.
Cohen
, and
Z. J.
Wang
, “
Fruit flies modulate passive wing pitching to generate in-flight turns
,”
Phys. Rev. Lett.
104
,
148101
(
2010
).
23.
A. R.
Ennos
, “
The importance of torsion in the design of insect wings
,”
J. Exp. Biol.
140
,
137
160
(
1988
).
24.
J. D.
DeLaurier
, “
An ornithopter wing design
,”
Can. Aeronaut. Space J.
40
,
10
18
(
1994
).
25.
J. D.
DeLaurier
, “
The development and testing of a full-scale piloted ornithopter
,”
Can. Aeronaut. Space J.
45
,
72
82
(
1999
).
26.
T. J.
Mueller
and
J. D.
DeLaurier
, “
Aerodynamics of small vehicles
,”
Annu. Rev. Fluid Mech.
35
,
89
111
(
2003
).
27.
W. F.
Phillips
and
D. O.
Snyder
, “
Modern adaptation of Prandtl’s classic lifting-line theory
,”
J. Aircr.
37
,
662
670
(
2000
).
28.
K. N.
Lucas
,
N.
Johnson
,
W. T.
Beaulieu
,
E.
Cathcart
,
G.
Tirrell
,
S. P.
Colin
,
B. J.
Gemmell
,
J. O.
Dabiri
, and
J. H.
Costello
, “
Bending rules for animal propulsion
,”
Nat. Commun.
5
,
3293
(
2014
).
You do not currently have access to this content.