We revisit the canonical Rayleigh-Taylor instability and investigate the case of a thin film of fluid upon the underside of an inclined plane. The presence of a natural flow along the plane competes with the conventional droplet forming instability. In particular, experiments reveal that no drops form for inclinations greater than a critical value. These features are rationalized in the context of the absolute/convective analysis conducted in this article.

1.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. A
201
,
192
196
(
1950
).
2.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Phys. D
12
,
3
18
(
1984
).
3.
C.-Y.
Wang
and
R. A.
Chevalier
, “
Instabilities and clumping in type Ia supernova remnants
,”
Astrophys. J.
549
,
1119
(
2001
).
4.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
5.
M.
Fermigier
,
L.
Limat
,
J. E.
Wesfreid
,
P.
Boudinet
, and
C.
Quilliet
, “
Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer
,”
J. Fluid Mech.
236
,
349
383
(
1992
).
6.
A.
Alexeev
and
A.
Oron
, “
Suppression of the Rayleigh-Taylor instability of thin liquid films by the Marangoni effect
,”
Phys. Fluids (1994-present)
19
,
082101
(
2007
).
7.
D. E.
Weidner
,
L. W.
Schwartz
, and
M. H.
Eres
, “
Suppression and reversal of drop formation in a model paint film
,”
Chem. Prod. Process Model.
2
,
1
30
(
2007
).
8.
V.
Lapuerta
,
F. J.
Mancebo
, and
J. M.
Vega
, “
Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers
,”
Phys. Rev. E
64
,
016318
(
2001
).
9.
R.
Cimpeanu
,
D. T.
Papageorgiou
, and
P. G.
Petropoulos
, “
On the control and suppression of the Rayleigh-taylor instability using electric fields
,”
Phys. Fluids (1994-present)
26
,
022105
(
2014
).
10.
L.
Landau
and
B.
Levich
, “
Dragging of a liquid by a moving plate
,”
Acta Physiochim
17
,
42
54
(
1942
).
11.
P. L.
Kapitza
and
S.
Kapitza
, “
Wave flow of thin layers of a viscous fluid
,”
Zh. Eksp. Teor. Fiz.
19
,
105
(
1949
).
12.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M. G.
Velarde
,
Falling Liquid Films
(
Springer Science & Business Media
,
2011
), Vol.
176
.
13.
A.
Indeikina
,
I.
Veretennikov
, and
H.-C.
Chang
, “
Drop fall-off from pendent rivulets
,”
J. Fluid Mech.
338
,
173
201
(
1997
).
14.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
2007
).
15.
R. J.
Briggs
,
Electron-Stream Interaction with Plasmas
(
MIT Press
,
Cambridge, MA
,
1964
), Vol.
121
.
16.
A.
Bers
,
Handbook of Plasma Physics I
, edited by
M. N.
Sagdeev
and
R. Z.
Rosenbluth
(
North-Holland
,
Amsterdam
,
1983
).
17.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
18.
P.
Guillot
,
A.
Colin
,
A. S.
Utada
, and
A.
Ajdari
, “
Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers
,”
Phys. Rev. Lett.
99
,
104502
(
2007
).
19.
S.
Kalliadasis
and
H.-C.
Chang
, “
Drop formation during coating of vertical fibres
,”
J. Fluid Mech.
261
,
135
168
(
1994
).
20.
C.
Duprat
,
C.
Ruyer-Quil
, and
F.
Giorgiutti-Dauphiné
, “
Spatial evolution of a film flowing down a fiber
,”
Phys. Fluids (1994-present)
21
,
042109
(
2009
).
21.
O.
Del Rıo
and
A.
Neumann
, “
Axisymmetric drop shape analysis: Computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops
,”
J. Colloid Interface Sci.
196
,
136
147
(
1997
).
22.
H. E.
Huppert
, “
The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface
,”
J. Fluid Mech.
121
,
43
58
(
1982
).
23.
E.
Guyon
,
J.-P.
Hulin
,
L.
Petit
, and
C. D.
Mitescu
,
Physical Hydrodynamics
(
Oxford University Press
,
2015
).
24.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Gouttes, Bulles, Perles et Ondes
(
Belin
,
Paris
,
2002
).
25.
J. R.
Lister
,
J. M.
Rallison
, and
S. J.
Rees
, “
The nonlinear dynamics of pendent drops on a thin film coating the underside of a ceiling
,”
J. Fluid Mech.
647
,
239
(
2010
).
26.
L.
Limat
,
P.
Jenffer
,
B.
Dagens
,
E.
Touron
,
M.
Fermigier
, and
J.
Wesfreid
, “
Gravitational instabilities of thin liquid layers: Dynamics of pattern selection
,”
Phys. D
61
,
166
182
(
1992
).
27.
W.
Van Saarloos
, “
Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence
,”
Phys. Rev. A
39
,
6367
(
1989
).
28.
T. R.
Powers
,
D.
Zhang
,
R. E.
Goldstein
, and
H. A.
Stone
, “
Propagation of a topological transition: The Rayleigh instability
,”
Phys. Fluids (1994-present)
10
,
1052
1057
(
1998
).
29.
W.
van Saarloos
, “
Front propagation into unstable states
,”
Phys. Rep.
386
,
29
222
(
2003
).
30.
J.-M.
Chomaz
, “
Global instabilities in spatially developing flows: Non-normality and nonlinearity
,”
Annu. Rev. Fluid Mech.
37
,
357
392
(
2005
).
31.
L.
Limat
, “
Instabilité d’un liquide suspendu sous un surplomb solide: Influence de l’épaisseur de la couche
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
317
,
563
568
(
1993
).
32.
P. H.
Trinh
,
H.
Kim
,
N.
Hammoud
,
P. D.
Howell
,
S. J.
Chapman
, and
H. A.
Stone
, “
Curvature suppresses the Rayleigh-Taylor instability
,”
Phys. Fluids (1994-present)
26
,
051704
(
2014
).
33.
T. S.
Lin
,
L.
Kondic
, and
A.
Filippov
, “
Thin films flowing down inverted substrates: Three-dimensional flow
,”
Phys. Fluids
24
,
022105
(
2012
).
34.
P.
Huerre
, “
Open shear flow instabilities
,” in
Perspectives in Fluid Dynamics
, edited by
G.
Batchelor
,
H.
Moffatt
, and
G.
Worster
(
Cambridge University Press
,
2000
), pp.
159
229
.
35.
See supplementary material at http://dx.doi.org/10.1063/1.4927857 for details on the method used to determine the number of droplets dripping in our experiments.

Supplementary Material

You do not currently have access to this content.