We revisit the canonical Rayleigh-Taylor instability and investigate the case of a thin film of fluid upon the underside of an inclined plane. The presence of a natural flow along the plane competes with the conventional droplet forming instability. In particular, experiments reveal that no drops form for inclinations greater than a critical value. These features are rationalized in the context of the absolute/convective analysis conducted in this article.
REFERENCES
1.
G.
Taylor
, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,” Proc. R. Soc. A
201
, 192
–196
(1950
).2.
D. H.
Sharp
, “An overview of Rayleigh-Taylor instability
,” Phys. D
12
, 3
–18
(1984
).3.
C.-Y.
Wang
and R. A.
Chevalier
, “Instabilities and clumping in type Ia supernova remnants
,” Astrophys. J.
549
, 1119
(2001
).4.
J.
Eggers
and E.
Villermaux
, “Physics of liquid jets
,” Rep. Prog. Phys.
71
, 036601
(2008
).5.
M.
Fermigier
, L.
Limat
, J. E.
Wesfreid
, P.
Boudinet
, and C.
Quilliet
, “Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer
,” J. Fluid Mech.
236
, 349
–383
(1992
).6.
A.
Alexeev
and A.
Oron
, “Suppression of the Rayleigh-Taylor instability of thin liquid films by the Marangoni effect
,” Phys. Fluids (1994-present)
19
, 082101
(2007
).7.
D. E.
Weidner
, L. W.
Schwartz
, and M. H.
Eres
, “Suppression and reversal of drop formation in a model paint film
,” Chem. Prod. Process Model.
2
, 1
–30
(2007
).8.
V.
Lapuerta
, F. J.
Mancebo
, and J. M.
Vega
, “Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers
,” Phys. Rev. E
64
, 016318
(2001
).9.
R.
Cimpeanu
, D. T.
Papageorgiou
, and P. G.
Petropoulos
, “On the control and suppression of the Rayleigh-taylor instability using electric fields
,” Phys. Fluids (1994-present)
26
, 022105
(2014
).10.
L.
Landau
and B.
Levich
, “Dragging of a liquid by a moving plate
,” Acta Physiochim
17
, 42
–54
(1942
).11.
P. L.
Kapitza
and S.
Kapitza
, “Wave flow of thin layers of a viscous fluid
,” Zh. Eksp. Teor. Fiz.
19
, 105
(1949
).12.
S.
Kalliadasis
, C.
Ruyer-Quil
, B.
Scheid
, and M. G.
Velarde
, Falling Liquid Films
(Springer Science & Business Media
, 2011
), Vol. 176
.13.
A.
Indeikina
, I.
Veretennikov
, and H.-C.
Chang
, “Drop fall-off from pendent rivulets
,” J. Fluid Mech.
338
, 173
–201
(1997
).14.
L. G.
Leal
, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(Cambridge University Press
, 2007
).15.
R. J.
Briggs
, Electron-Stream Interaction with Plasmas
(MIT Press
, Cambridge, MA
, 1964
), Vol. 121
.16.
A.
Bers
, Handbook of Plasma Physics I
, edited by M. N.
Sagdeev
and R. Z.
Rosenbluth
(North-Holland
, Amsterdam
, 1983
).17.
P.
Huerre
and P. A.
Monkewitz
, “Local and global instabilities in spatially developing flows
,” Annu. Rev. Fluid Mech.
22
, 473
–537
(1990
).18.
P.
Guillot
, A.
Colin
, A. S.
Utada
, and A.
Ajdari
, “Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers
,” Phys. Rev. Lett.
99
, 104502
(2007
).19.
S.
Kalliadasis
and H.-C.
Chang
, “Drop formation during coating of vertical fibres
,” J. Fluid Mech.
261
, 135
–168
(1994
).20.
C.
Duprat
, C.
Ruyer-Quil
, and F.
Giorgiutti-Dauphiné
, “Spatial evolution of a film flowing down a fiber
,” Phys. Fluids (1994-present)
21
, 042109
(2009
).21.
O.
Del Rıo
and A.
Neumann
, “Axisymmetric drop shape analysis: Computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops
,” J. Colloid Interface Sci.
196
, 136
–147
(1997
).22.
H. E.
Huppert
, “The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface
,” J. Fluid Mech.
121
, 43
–58
(1982
).23.
E.
Guyon
, J.-P.
Hulin
, L.
Petit
, and C. D.
Mitescu
, Physical Hydrodynamics
(Oxford University Press
, 2015
).24.
P.-G.
de Gennes
, F.
Brochard-Wyart
, and D.
Quéré
, Gouttes, Bulles, Perles et Ondes
(Belin
, Paris
, 2002
).25.
J. R.
Lister
, J. M.
Rallison
, and S. J.
Rees
, “The nonlinear dynamics of pendent drops on a thin film coating the underside of a ceiling
,” J. Fluid Mech.
647
, 239
(2010
).26.
L.
Limat
, P.
Jenffer
, B.
Dagens
, E.
Touron
, M.
Fermigier
, and J.
Wesfreid
, “Gravitational instabilities of thin liquid layers: Dynamics of pattern selection
,” Phys. D
61
, 166
–182
(1992
).27.
W.
Van Saarloos
, “Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence
,” Phys. Rev. A
39
, 6367
(1989
).28.
T. R.
Powers
, D.
Zhang
, R. E.
Goldstein
, and H. A.
Stone
, “Propagation of a topological transition: The Rayleigh instability
,” Phys. Fluids (1994-present)
10
, 1052
–1057
(1998
).29.
W.
van Saarloos
, “Front propagation into unstable states
,” Phys. Rep.
386
, 29
–222
(2003
).30.
J.-M.
Chomaz
, “Global instabilities in spatially developing flows: Non-normality and nonlinearity
,” Annu. Rev. Fluid Mech.
37
, 357
–392
(2005
).31.
L.
Limat
, “Instabilité d’un liquide suspendu sous un surplomb solide: Influence de l’épaisseur de la couche
,” C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
317
, 563
–568
(1993
).32.
P. H.
Trinh
, H.
Kim
, N.
Hammoud
, P. D.
Howell
, S. J.
Chapman
, and H. A.
Stone
, “Curvature suppresses the Rayleigh-Taylor instability
,” Phys. Fluids (1994-present)
26
, 051704
(2014
).33.
T. S.
Lin
, L.
Kondic
, and A.
Filippov
, “Thin films flowing down inverted substrates: Three-dimensional flow
,” Phys. Fluids
24
, 022105
(2012
).34.
P.
Huerre
, “Open shear flow instabilities
,” in Perspectives in Fluid Dynamics
, edited byG.
Batchelor
, H.
Moffatt
, and G.
Worster
(Cambridge University Press
, 2000
), pp. 159
–229
.35.
See supplementary material at http://dx.doi.org/10.1063/1.4927857 for details on the method used to determine the number of droplets dripping in our experiments.
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.