Motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., “A model of force generation in a three-dimensional toroidal cluster of cells,” J. Appl. Mech. 79, 051013 (2012)], we study a related problem of the determination of the equilibrium and stability of axisymmetric drops on a conical substrate in the presence of gravity. A variational principle is used to characterize equilibrium shapes that minimize surface energy and gravitational potential energy subject to a volume constraint, and the resulting Euler equation is solved numerically using an angle/arclength formulation. The resulting equilibria satisfy a Laplace-Young boundary condition that specifies the contact angle at the three-phase trijunction. The vertical position of the equilibrium drops on the cone is found to vary significantly with the dimensionless Bond number that represents the ratio of gravitational and capillary forces; a global force balance is used to examine the conditions that affect the drop positions. In particular, depending on the contact angle and the cone half-angle, we find that the vertical position of the drop can either increase (“the drop climbs the cone”) or decrease due to a nominal increase in the gravitational force. Most of the equilibria correspond to upward-facing cones and are analogous to sessile drops resting on a planar surface; however, we also find equilibria that correspond to downward facing cones that are instead analogous to pendant drops suspended vertically from a planar surface. The linear stability of the drops is determined by solving the eigenvalue problem associated with the second variation of the energy functional. The drops with positive Bond number are generally found to be unstable to non-axisymmetric perturbations that promote a tilting of the drop. Additional points of marginal stability are found that correspond to limit points of the axisymmetric base state. Drops that are far from the tip are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. We have also found a range of completely stable solutions that correspond to small contact angles and cone half-angles.

1.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quere
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
Berlin
,
2004
).
2.
H. M.
Princen
, “
The equilibrium shape of interfaces, drops, and bubbles. Rigid and deformable particles at interfaces
,” in
Surface and Colloid Science
, edited by
E.
Matijevíc
(
Wiley-Interscience
,
New York
,
1969
), Vol.
2
, pp.
1
84
.
3.
D. H.
Michael
, “
Meniscus stability
,”
Annu. Rev. Fluid Mech.
81
,
189
215
(
1981
).
4.
A. J. B.
Milne
,
B.
Defez Garcia
,
M. A.
Cabrerizo-Vílchez
, and
A.
Amirfazli
, “
Understanding (sessile/constrained) bubble and drop oscillations
,”
Adv. Colloid Interface Sci.
203
,
22
36
(
2014
).
5.
J. B.
Bostwick
and
P. H.
Steen
, “
Stability of constrained capillary surfaces
,”
Annu. Rev. Fluid Mech.
47
,
539
568
(
2015
).
6.
A.
Nurse
,
L. B.
Freund
, and
J.
Youssef
, “
A model of force generation in a three-dimensional toroidal cluster of cells
,”
J. Appl. Mech.
79
,
051013
(
2012
).
7.
J.
Youssef
,
A. K.
Nurse
,
L. B.
Freund
, and
J. R.
Morgan
, “
Quantification of the forces driving self-assembly of three-dimensional microtissues
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
6993
6998
(
2011
).
8.
S. R.
Coriell
and
M. R.
Cordes
, “
Theory of molten zone shape and stability
,”
J. Cryst. Growth
42
,
466
472
(
1977
).
9.
E.
Pairam
and
A.
Fernández-Nieves
, “
Generation and stability of toroidal droplets in a viscous liquid
,”
Phys. Rev. Lett.
102
,
234501
(
2009
).
10.
J. D.
McGraw
,
J.
Li
,
D. L.
Tran
,
A. C.
Shi
, and
K.
Dalnoki-Veress
, “
Plateau-Rayleigh instability in a torus: Formation and breakup of a polymer ring
,”
Soft Matter
6
,
1258
1262
(
2010
).
11.
Y.
Wu
,
J. D.
Fowlkes
,
P. D.
Rack
,
J. A.
Diez
, and
L.
Kondic
, “
On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: Competing liquid-phase instability and transport mechanisms
,”
Langmuir
26
,
11972
11979
(
2010
).
12.
J. B.
Bostwick
and
P. H.
Steen
, “
Stability of constrained cylindrical interfaces and the torus lift of Plateau-Rayleigh
,”
J. Fluid Mech.
647
,
201
219
(
2010
).
13.
A. G.
González
,
J. A.
Diez
, and
L.
Kondic
, “
Stability of a liquid ring on a substrate
,”
J. Fluid Mech.
718
,
246
279
(
2013
).
14.
Z.
Yao
and
M. J.
Bowick
, “
The shrinking instability of toroidal liquid droplets in the Stokes flow regime
,”
Eur. Phys. J. E
34
,
32
(
2011
).
15.
S.
Zhao
and
J.
Tao
, “
Instability of a rotating liquid ring
,”
Phys. Rev. E
88
,
033016
(
2013
).
16.
H.
Mehrabian
and
J. J.
Feng
, “
Capillary breakup of a liquid torus
,”
J. Fluid Mech.
717
,
281
292
(
2013
).
17.
T. D.
Nguyen
,
M.
Fuentes-Cabrera
,
J. D.
Fowlkes
,
J. A.
Diez
,
A. G.
Gonzlez
,
L.
Kondic
, and
P. D.
Rack
, “
Competition between collapse and breakup in nanometer-sized thin rings using molecular dynamics and continuum modeling
,”
Langmuir
28
,
13960
13967
(
2012
).
18.
B. D.
Texier
,
K.
Piroird
,
D.
Quéré
, and
C.
Clanet
, “
Inertial collapse of liquid rings
,”
J. Fluid Mech.
717
,
R3-1–R3-10
(
2013
).
19.
A. K.
Nurse
,
S. R.
Coriell
, and
G. B.
McFadden
, “
On the stability of rotating drops
,”
J. Res. Natl. Inst. Stand. Technol.
120
,
74
101
(
2015
).
20.
S. H.
Davis
,
Theory of Solidification
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
21.
F.
Julicher
and
U.
Seifert
, “
Shape equations for axisymmetric vesicles: A clarification
,”
Phys. Rev. E
49
,
4728
4731
(
1994
).
22.
F. M.
Orr
and
L. E.
Scriven
, “
Comment on ‘The capillary binding force of a liquid bridge
,”’
Powder Technol.
12
,
191
193
(
1975
).
23.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
New York
,
2010
).
24.
G. H.
Golub
, “
Some modified matrix eigenvalue problems
,”
SIAM Rev.
15
,
318
334
(
1973
).
25.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
New York
,
1981
).
26.
G.
Ioss
and
D. D.
Joseph
,
Elementary Stability and Bifurcation Theory
(
Springer
,
New York
,
1980
).
27.
R. D.
Gillette
and
D. C.
Dyson
, “
Stability of axisymmetric liquid-fluid interfaces towards general disturbances
,”
Chem. Eng. J.
3
,
196
199
(
1972
).
28.
P. G.
DeGennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
863
(
1985
).
29.
E. J.
Schwalbach
,
S. H.
Davis
,
P. W.
Voorhees
,
J. A.
Warren
, and
D.
Wheeler
, “
Stability and topological transformations of liquid droplets on vapor-liquid-solid nanowires
,”
J. Appl. Phys.
111
,
024302
(
2012
).
You do not currently have access to this content.