This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number (Reτ = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles on the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise (x) and wall-normal (y) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the turbulence structure around the turbulence kinetic energy peak.

1.
J. R.
Fessler
,
J. D.
Kulick
, and
J. K.
Eaton
, “
Preferential concentration of heavy particles in a turbulent channel flow
,”
Phys. Fluids
6
,
3742
(
1994
).
2.
J. D.
Kulick
,
J. R.
Fessler
, and
J. K.
Eaton
, “
Particle response and turbulence modification in fully developed channel flow
,”
J. Fluid Mech.
277
,
109
134
(
1994
).
3.
J.
Kussin
and
M.
Sommerfeld
, “
Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness
,”
Exp. Fluids
33
,
143
159
(
2002
).
4.
S.
Lain
,
M.
Sommerfeld
, and
J.
Kussin
, “
Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow
,”
Int. J. Heat Fluid Flow
23
,
647
656
(
2002
).
5.
D.
Eskin
, “
Modeling dilute gas-particle flows in horizontal channels with different wall roughness
,”
Chem. Eng. Sci.
60
,
655
663
(
2005
).
6.
C.
Marchioli
,
A.
Soldati
,
J. G. M.
Kuerten
,
B.
Arcen
,
A.
Taniere
,
G.
Goldensoph
,
K. D.
Squires
,
M. F.
Cargnelutti
, and
L. M.
Portela
, “
Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test
,”
Int. J. Multiphase Flow
34
,
879
893
(
2008
).
7.
Y.
Tsuji
,
T.
Tanaka
, and
T.
Ishida
, “
Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe
,”
Powder Technol.
71
,
239
250
(
1992
).
8.
F.-G.
Fan
and
G.
Ahmadi
, “
A sublayer model for wall deposition of ellipsoidal particles in turbulent streams
,”
J. Aerosol Sci.
26
,
813
840
(
1995
).
9.
C.
Marchioli
,
M.
Fantoni
, and
A.
Soldati
, “
Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow
,”
Phys. Fluids
22
,
033301
(
2010
).
10.
P.
Mortensen
,
H.
Andersson
,
J.
Gillissen
, and
B.
Boersma
, “
On the orientation of ellipsoidal particles in a turbulent shear flow
,”
Int. J. Multiphase Flow
34
,
678
683
(
2008
).
11.
P. H.
Mortensen
,
H. I.
Andersson
,
J. J. J.
Gillissen
, and
B. J.
Boersma
, “
Dynamics of prolate ellipsoidal particles in a turbulent channel flow
,”
Phys. Fluids
20
,
093302
(
2008
).
12.
H.
Zhang
,
G.
Ahmadi
,
F.-G.
Fan
, and
J. B.
McLaughlin
, “
Ellipsoidal particles transport and deposition in turbulent channel flows
,”
Int. J. Multiphase Flow
27
,
971
1009
(
2001
).
13.
L.
Zhao
and
H. I.
Andersson
, “
On particle spin in two-way coupled turbulent channel flow simulations
,”
Phys. Fluids
23
,
093302
(
2011
).
14.
F.
Zhao
and
B.
van Wachem
, “
Direct numerical simulation of ellipsoidal particles in turbulent channel flow
,”
Acta Mech.
224
,
2331
2358
(
2013
).
15.
S.
Balachandar
and
J. K.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
133
(
2010
).
16.
C. T.
Crowe
,
M. P.
Sharma
, and
D. E.
Stock
, “
The particle-source-in cell (PSI-CELL) model for gas-droplet flows
,”
J. Fluids Eng.
99
,
325
333
(
1977
).
17.
J. K.
Eaton
, “
Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking
,”
Int. J. Multiphase Flow
35
,
792
800
(
2009
).
18.
L.
Portela
and
R.
Oliemans
, “
Eulerian–Lagrangian DNS/LES of particle–turbulence interactions in wall-bounded flows
,”
Int. J. Numer. Methods Fluids
43
,
1045
1065
(
2003
).
19.
K. D.
Squires
and
J. K.
Eaton
, “
Preferential concentration of particles by turbulence
,”
Phys. Fluids A
3
,
1169
(
1991
).
20.
B.
van Wachem
,
J.
Van der Schaaf
,
J.
Schouten
,
R.
Krishna
, and
C.
van den Bleek
, “
Experimental validation of Lagrangian–Eulerian simulations of fluidized beds
,”
Powder Technol.
116
,
155
165
(
2001
).
21.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. A
102
,
161
179
(
1922
).
22.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle
,”
Chem. Eng. Sci.
18
,
1
25
(
1963
).
23.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle-IV arbitrary fields of flow
,”
Chem. Eng. Sci.
19
,
631
651
(
1964
).
24.
I.
Gallily
and
A.-H. A.
Cohen
, “
On the orderly nature of the motion of nonspherical aerosol particles. II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle
,”
J. Colloid Interface Sci.
68
,
338
356
(
1979
).
25.
H. I.
Andersson
,
L.
Zhao
, and
M.
Barri
, “
Torque-coupling and particle-turbulence interactions
,”
J. Fluid Mech.
696
,
319
329
(
2012
).
26.
F.
Zhao
and
B.
van Wachem
, “
A novel Quaternion integration approach for describing the behaviour of non-spherical particles
,”
Acta Mech.
224
,
3091
3109
(
2013
).
27.
S.
Elghobashi
and
G. C.
Truesdell
, “
On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification
,”
Phys. Fluids A
5
,
1790
(
1993
).
28.
C. T.
Crowe
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
1998
).
29.
M. R.
Maxey
and
J. R. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
(
1983
).
30.
M. P.
Allen
and
D. J.
Tildesley
, in
The Computer Simulation of Liquids
(
Oxford University Press
,
1989
), Vol.
42
.
31.
D.
Evans
and
S.
Murad
, “
Singularity free algorithm for molecular dynamics simulation of rigid polyatomics
,”
Mol. Phys.
34
,
327
331
(
1977
).
32.
L.
Ibanez
, “
Tutorial on quaternions part I
,”
Technical Report 8
, Insight Segmentation and Registration Toolkit, ITK, 2001.
33.
M.
Kleppmann
, “
Simulation of colliding constrained rigid bodies
,”
Technical Report 683, UCAM-CL-TR-683
, University of Cambridge, 2007, ISSN: 1476-2986.
34.
O. R.
Walton
and
R. L.
Braun
, “
Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters
,” in
Joint DOE/NSF Workshop on Flow of Particles and Fluids
, Sept 29 - Oct 1, 1993, Ithaca, NY, USA.
35.
P. K.
Yeung
and
S. B.
Pope
, “
An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence
,”
J. Comput. Phys.
79
,
373
416
(
1988
).
36.
R. D.
Mindlin
and
H.
Deresiewicz
, “
Elastic spheres in contact under varying oblique forces
,”
J. Appl. Mech.
20
,
327
344
(
1953
).
37.
G.
Mallouppas
and
B.
van Wachem
, “
Large eddy simulations of turbulent particle-laden channel flow
,”
Int. J. Multiphase Flow
54
,
65
75
(
2013
).
38.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
39.
M.
Shapiro
and
M.
Goldenberg
, “
Deposition of glass fiber particles from turbulent air flow in a pipe
,”
J. Aerosol Sci.
24
,
65
87
(
1993
).
40.
R. A.
Antonia
and
J.
Kim
, “
A numerical study of local isotropy of turbulence
,”
Phys. Fluids
6
,
834
841
(
1994
).
41.
R. A.
Antonia
,
J.
Kim
, and
L. W. B.
Browne
, “
Some characteristics of small-scale turbulence in a turbulent duct flow
,”
J. Fluid Mech.
233
,
369
388
(
1991
).
42.
W.
George
and
H. J.
Hussein
, “
Locally axisymmetric turbulence
,”
J. Fluid Mech.
233
,
1
23
(
1991
).
43.
J.
Kim
and
R. A.
Antonia
, “
Isotropy of the small scales of turbulence at low Reynolds number
,”
J. Fluid Mech.
251
,
219
238
(
1993
).
44.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
773
(
1967
).
45.
E.
Corino
and
R. S.
Brodkey
, “
A visual investigation of the wall region in turbulent flow
,”
J. Fluid Mech.
37
,
1
30
(
1969
).
46.
S.
Goto
and
J. C.
Vassilicos
, “
Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence
,”
Phys. Fluids
18
,
115103
(
2006
).
You do not currently have access to this content.