The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.

1.
J.
Fan
,
M. C. T.
Wilson
, and
N.
Kapur
, “
Displacement of liquid droplets on a surface by a shearing air flow
,”
J. Colloid Interface Sci.
356
,
286
(
2011
).
2.
A. C.
Robertson
,
I. J.
Taylor
,
S. K.
Wilson
,
B. R.
Duffy
, and
J. M.
Sullivan
, “
Numerical simulation of rivulet evolution on a horizontal cable subject to an external aerodynamic field
,”
J. Fluids Struct.
26
,
50
(
2010
).
3.
C.
Lemaitre
,
E.
de Langre
, and
P.
Hémon
, “
Rainwater rivulets running on a stay cable subject to wind
,”
Eur. J. Mech., B: Fluids
29
,
251
(
2010
).
4.
H.
Kim
,
S.
Grobe
,
G. E.
Elsinga
, and
J.
Westerweel
, “
Full 3D-3C velocity measurement inside a liquid immersion droplet
,”
Exp. Fluids
51
,
395
(
2011
).
5.
J. A.
Cuminato
,
A. D.
Fitt
,
M. J. S.
Mphaka
, and
A.
Nagamine
, “
A singular integro-differential equation model for dryout in LMFBR boiler tubes
,”
IMA J. Appl. Math.
75
,
269
(
2010
).
6.
F.-C.
Chou
and
P.-Y.
Wu
, “
Effect of air shear on film planarization during spin coating
,”
J. Electrochem. Soc.
147
,
699
(
2000
).
7.
T. G.
Myers
and
J. P. F.
Charpin
, “
A mathematical model for atmospheric ice accretion and water flow on a cold surface
,”
Int. J. Heat Mass Transfer
47
,
5483
(
2004
).
8.
X.
Li
and
C.
Pozrikidis
, “
Shear flow over a liquid drop adhering to a solid surface
,”
J. Fluid Mech.
307
,
167
(
1996
).
9.
P.
Dimitrakopoulos
and
J. J. L.
Higdon
, “
Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows
,”
J. Fluid Mech.
336
,
351
(
1997
).
10.
P.
Dimitrakopoulos
and
J. J. L.
Higdon
, “
On the displacement of three-dimensional fluid droplets from solid surfaces in low-Reynolds-number shear flows
,”
J. Fluid Mech.
377
,
189
(
1998
).
11.
P.
Dimitrakopoulos
and
J. J. L.
Higdon
, “
On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces
,”
J. Fluid Mech.
395
,
181
(
1999
).
12.
P.
Dimitrakopoulos
and
J. J. L.
Higdon
, “
On the displacement of three-dimensional fluid droplets adhering to a plane wall in viscous pressure-driven flows
,”
J. Fluid Mech.
435
,
327
(
2001
).
13.
A. D.
Schleizer
and
R. T.
Bonnecaze
, “
Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows
,”
J. Fluid Mech.
383
,
29
(
1999
).
14.
S.
Yon
and
C.
Pozrikidis
, “
Deformation of a liquid drop adhering to a plane wall: Significance of the drop viscosity and the effect of an insoluble surfactant
,”
Phys. Fluids
11
,
1297
(
1999
).
15.
P. D. M.
Spelt
, “
Shear flow past two-dimensional droplets pinned or moving on an adhering channel wall at moderate Reynolds numbers: A numerical study
,”
J. Fluid Mech.
561
,
439
(
2006
).
16.
J.
Zhang
,
M. J.
Miksis
, and
S. G.
Bankoff
, “
Nonlinear dynamics of a two-dimensional viscous drop under shear flow
,”
Phys. Fluids
18
,
072106
(
2006
).
17.
P.
Dimitrakopoulos
, “
Deformation of a droplet adhering to a solid surface in shear flow: Onset of interfacial sliding
,”
J. Fluid Mech.
580
,
451
(
2007
).
18.
P.
Dimitrakopoulos
, “
Gravitational effects on the deformation of a droplet adhering to a horizontal solid surface in shear flow
,”
Phys. Fluids
19
,
122105
(
2007
).
19.
H.
Ding
and
P. D. M.
Spelt
, “
Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers
,”
J. Fluid Mech.
599
,
341
(
2008
).
20.
E.
Shirani
and
S.
Masoomi
, “
Deformation of a droplet in a channel flow
,”
J. Fuel Cell Sci. Technol.
5
,
041008
(
2008
).
21.
K.
Sugiyama
and
M.
Sbragaglia
, “
Linear shear flow past a hemispherical droplet adhering to a solid surface
,”
J. Eng. Math.
62
,
35
(
2008
).
22.
H.
Ding
,
M. N. H.
Gilani
, and
P. D. M.
Spelt
, “
Sliding, pinch-off and detachment of a droplet on a wall in a shear flow
,”
J. Fluid Mech.
644
,
217
(
2010
).
23.
L.
Hao
and
P.
Cheng
, “
An analytical model for micro-droplet steady movement on the hydrophobic wall of a micro-channel
,”
Int. J. Heat Mass Transfer
53
,
1243
(
2010
).
24.
J. M.
Sullivan
,
C.
Paterson
,
S. K.
Wilson
, and
B. R.
Duffy
, “
A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow
,”
Phys. Fluids
24
,
082109
(
2012
).
25.
P. A.
Durbin
, “
On the wind force needed to dislodge a drop adhered to a surface
,”
J. Fluid Mech.
196
,
205
(
1988
).
26.
A. C.
King
and
E. O.
Tuck
, “
Thin liquid layers supported by steady air-flow surface traction
,”
J. Fluid Mech.
251
,
709
(
1993
).
27.
A. C.
King
,
E. O.
Tuck
, and
J.-M.
Vanden-Broeck
, “
Air-blown waves on thin viscous sheets
,”
Phys. Fluids A
5
,
973
(
1993
).
28.
J. A.
Cuminato
,
A. D.
Fitt
, and
S.
McKee
, “
A review of linear and nonlinear Cauchy singular integral and integro-differential equations arising in mechanics
,”
J. Integr. Equations Appl.
19
,
163
(
2007
).
29.
J. A.
Moriarty
,
L. W.
Schwartz
, and
E. O.
Tuck
, “
Unsteady spreading of thin liquid films with small surface tension
,”
Phys. Fluids A
3
,
733
(
1991
).
30.
J. J.
Kriegsmann
,
M. J.
Miksis
, and
J.-M.
Vanden-Broeck
, “
Pressure driven disturbances on a thin viscous film
,”
Phys. Fluids
10
,
1249
(
1998
).
31.
I. S.
McKinley
,
S. K.
Wilson
, and
B. R.
Duffy
, “
Spin coating and air-jet blowing of thin viscous drops
,”
Phys. Fluids
11
,
30
(
1999
).
32.
T. G.
Myers
,
H. X.
Liang
, and
B.
Wetton
, “
The stability and flow of a rivulet driven by interfacial shear and gravity
,”
Int. J. Nonlinear Mech.
39
,
1239
(
2004
).
33.
H. H.
Saber
and
M. S.
El-Genk
, “
On the breakup of a thin liquid film subject to interfacial shear
,”
J. Fluid Mech.
500
,
113
(
2004
).
34.
M.
Villegas-Díaz
,
H.
Power
, and
D. S.
Riley
, “
Analytical and numerical studies of the stability of thin-film rimming flow subject to surface shear
,”
J. Fluid Mech.
541
,
317
(
2005
).
35.
S. K.
Wilson
and
B. R.
Duffy
, “
Unidirectional flow of a thin rivulet on a vertical substrate subject to a prescribed uniform shear stress at its free surface
,”
Phys. Fluids
17
,
108105
(
2005
).
36.
N. H.
Shuaib
,
H.
Power
,
S.
Hibberd
, and
K.
Simmons
, “
A numerical study of wave structures developed on the free surface of a film flowing on inclined planes and subjected to surface shear
,”
Int. J. Numer. Methods Eng.
68
,
755
(
2006
).
37.
N.
Alleborn
,
A.
Sharma
, and
A.
Delgado
, “
Probing of thin slipping films by persistent external disturbances
,”
Can. J. Chem. Eng.
85
,
586
(
2007
).
38.
J. P.
Pascal
and
S. J. D.
D’Alessio
, “
Instability of power-law fluid flows down an incline subjected to wind stress
,”
Appl. Math. Modell.
31
,
1229
(
2007
).
39.
J. M.
Sullivan
,
S. K.
Wilson
, and
B. R.
Duffy
, “
A thin rivulet of perfectly wetting fluid subject to a longitudinal surface shear stress
,”
Q. J. Mech. Appl. Math.
61
,
25
(
2008
).
40.
S. K.
Wilson
,
J. M.
Sullivan
, and
B. R.
Duffy
, “
The energetics of the breakup of a sheet and of a rivulet on a vertical substrate in the presence of a uniform surface shear stress
,”
J. Fluid Mech.
674
,
281
(
2011
).
41.
Y. M.
Yatim
,
B. R.
Duffy
, and
S. K.
Wilson
, “
Similarity solutions for unsteady shear-stress-driven flow of Newtonian and power-law fluids: Slender rivulets and dry patches
,”
J. Eng. Math.
73
,
53
(
2012
).
42.
C. W. J.
Berendsen
,
J. C. H.
Zeegers
, and
A. A.
Darhuber
, “
Thinning and rupture of liquid films by moving slot jets
,”
Langmuir
29
,
15851
(
2013
).
43.
C.
Paterson
,
S. K.
Wilson
, and
B. R.
Duffy
, “
Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress
,”
Q. J. Mech. Appl. Math.
67
,
567
(
2014
).
44.
M.
Van Dyke
,
Perturbation Methods in Fluid Mechanics
, 2nd ed. (
Parabolic
,
1975
).
45.
C.
Paterson
, “
Thin fluid films subject to external airflows
,” Ph.D. thesis,
University of Strathclyde
, Glasgow,
2013
.
46.
E. B.
Dussan V
, “
On the ability of drops to stick to surfaces of solids. Part 3. The influences of the motion of the surrounding fluid on dislodging drops
,”
J. Fluid Mech.
174
,
381
(
1987
).
47.
T. D.
Blake
and
K. J.
Ruschak
, “
Wetting: Static and dynamic contact lines
,” in
Liquid Film Coating
, edited by
S. F.
Kistler
and
P. M.
Schweizer
(
Chapman and Hall
,
1997
).
48.
J. A.
Diez
,
A. G.
González
, and
L.
Kondic
, “
Instability of a transverse liquid rivulet on an inclined plane
,”
Phys. Fluids
24
,
032104
(
2012
).
49.
J. R.
Lister
,
J. M.
Rallison
, and
S. J.
Rees
, “
The nonlinear dynamics of pendent drops on a thin film coating the underside of a ceiling
,”
J. Fluid Mech.
647
,
239
(
2010
).
50.
L. M.
Hocking
and
M. J.
Miksis
, “
Stability of a ridge of fluid
,”
J. Fluid Mech.
247
,
157
(
1993
).
51.
L. M.
Hocking
, “
Spreading and instability of a viscous fluid sheet
,”
J. Fluid Mech.
211
,
373
(
1990
).
52.
J. R.
King
,
A.
Münch
, and
B.
Wagner
, “
Linear stability of a ridge
,”
Nonlinearity
19
,
2813
(
2006
).
53.
J. A.
Diez
,
A. G.
González
, and
L.
Kondic
, “
On the breakup of fluid rivulets
,”
Phys. Fluids
21
,
082105
(
2009
).
54.
A. D.
Sommers
,
J.
Ying
, and
K. F.
Eid
, “
Predicting the onset of condensate droplet departure from a vertical surface due to air flow – Applications to topographically-modified, micro-grooved surfaces
,”
Exp. Therm. Fluid Sci.
40
,
38
(
2012
).
55.
H.
Hu
,
S.
Huang
, and
L.
Chen
, “
Displacement of liquid droplets on micro-grooved surfaces with air flow
,”
Exp. Therm. Fluid Sci.
49
,
86
(
2013
).
You do not currently have access to this content.