A combined wind tunnel and computational study of grid-generated turbulence along the centreline shows that the close to −5/3 power law signature of energy spectra in the frequency domain originates relatively close to the grid not only where the velocity derivative statistics become quite suddenly isotropic but also where the turbulent fluctuating velocities are very intermittent and non-Gaussian. As the inlet flow velocity increases, these power laws are increasingly well defined and increasingly close to −5/3 over an increasing range of frequencies. However, this range continuously decreases with streamwise distance from the grid even though the local Reynolds number first increases and then decreases along the same streamwise extent. The intermittency at the point of origin of the close to −5/3 power spectra consists of alternations between intense vortex tube clusters with shallow broad-band spectra and quiescent regions where the velocity fluctuations are smooth with steep energy spectra.

1.
A.
Kolmogorov
, “
Dissipation of energy in locally isotropic turbulence
,”
Dolk. Akad. Nauk SSSR
32
,
19
(
1941
).
2.
A.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dolk. Akad. Nauk SSSR
30
,
299
(
1941
).
3.
A.
Townsend
, “
On the fine-scale structure of turbulence
,”
Proc. R. Soc. A
208
,
534
(
1951
).
4.
R.
Betchov
, “
An inequality concerning the production of vorticity in isotropic turbulence
,”
J. Fluid Mech.
1
(
05
),
497
(
1956
).
5.
S.
Corrsin
, “
Turbulent dissipation fluctuations
,”
Phys. Fluids
5
(
10
),
1301
(
1962
).
6.
H.
Tennekes
, “
Simple model for the small-scale structure of turbulence
,”
Phys. Fluids
11
(
3
),
669
(
1968
).
7.
P.
Saffman
, “
Lectures on homogeneous turbulence
,” in
Topics in Nonlinear Physics
(
Springer-Verlag
,
Berlin
,
1968
), pp.
485
614
.
8.
T.
Lundgren
, “
Strained spiral vortex model for turbulent fine structure
,”
Phys. Fluids
25
(
12
),
2193
(
1982
).
9.
A.
Gilbert
, “
A cascage interpretation of Lundgren’s streched spiral vortex model for turbulent fine structure
,”
Phys. Fluids
5
,
2831
(
1993
).
10.
S.
Saddoughi
and
S.
Veeravalli
, “
Local isotropy in turbulent boundary layers at high Reynolds number
,”
J. Fluid Mech.
268
,
333
(
1994
).
11.
L.
Simmons
and
C.
Salter
, “
Experimental investigation and analysis of the velocity variations in turbulent flow
,”
Proc. R. Soc. A
145
,
212
(
1934
).
12.
Jayesh
and
Z.
Warhaft
, “
Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence
,”
Phys. Fluids
4
(
10
),
2292
(
1992
).
13.
D.
Hurst
and
J. C.
Vassilicos
, “
Scalings and decay of fractal-generated turbulence
,”
Phys. Fluids
19
,
035103
(
2007
).
14.
P.
Krogstad
and
P.
Davidson
, “
Near-field investigation of turbulence produced by multi-scale grids
,”
Phys. Fluids
24
(
3
),
035103
(
2012
).
15.
J.
Vassilicos
, “
Dissipation in turbulent flows
,”
Annu. Rev. Fluid Mech.
47
,
95
(
2015
).
16.
P.
Valente
and
J. C.
Vassilicos
, “
Universal dissipation scaling for non-equilibrium turbulence
,”
Phys. Rev. Lett.
108
,
214503
(
2012
).
17.
R.
Hearst
and
P.
Lavoie
, “
Decay of turbulence generated by a square-fractal-element grid
,”
J. Fluid Mech.
741
,
567
(
2014
).
18.
J.
Isaza
,
R.
Salazar
, and
Z.
Warhaft
, “
On grid-generated turbulence in the near-and far field regions
,”
J. Fluid Mech.
753
,
402
(
2014
).
19.
L.
Onsager
, “
Statistical hydrodynamics
,”
II Nuovo Cimento
6
,
279
(
1949
).
20.
J.
Hunt
and
J.
Vassilicos
, “
Kolmogorov’s contributions to the physical and geometrical understanding of small-scale turbulence and recent developments
,”
Proc. R. Soc. A
434
(
1890
),
183
(
1991
).
21.
S.
Laizet
,
J.
Vassilicos
, and
C.
Cambon
, “
Interscale energy transfer in decaying turbulence and vorticity–strain-rate dynamics in grid-generated turbulence
,”
Fluid Dyn. Res.
45
(
6
),
061408
(
2013
).
22.
S.
Laizet
,
J.
Nedić
, and
J.
Vassilicos
, “
Influence of the spatial resolution on fine-scale features in dns of turbulence generated by a single square grid
,”
Int. J. Comput. Fluid Dyn.
(in press).
23.
R.
Gomes-Fernandes
,
B.
Ganapathisubramani
, and
J.
Vassilicos
, “
Evolution of the velocity-gradient tensor in spatially developing turbulent flow
,”
J. Fluid Mech.
752
,
252
(
2014
).
24.
Y.
Zhou
,
K.
Nagata
,
Y.
Sakai
,
H.
Suzuki
,
Y.
Ito
,
O.
Terashima
, and
T.
Hayase
, “
Development of turbulence behind the single square grid
,”
Phys. Fluids
26
(
4
),
045102
(
2014
).
25.
Y.
Zhou
,
K.
Nagata
,
Y.
Sakai
,
H.
Suzuki
,
Y.
Ito
,
O.
Terashima
, and
T.
Hayase
, “
Relevance of turbulence behind the single square grid to turbulence generated by regular-and multiscale-grids
,”
Phys. Fluids
26
(
7
),
075105
(
2014
).
26.
N.
Mazellier
and
J. C.
Vassilicos
, “
Turbulence without Richardson-Kolmogorov cascade
,”
Phys. Fluids
22
,
075101
(
2010
).
27.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
28.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with the quasi-spectral accuracy
,”
J. Comput. Phys.
228
(
16
),
5989
(
2009
).
29.
S.
Laizet
and
J. C.
Vassilicos
, “
DNS of fractal-generated turbulence
,”
Flow, Turbul. Combust.
87
(
4
),
673
(
2011
).
30.
S.
Laizet
and
N.
Li
, “
Incompact3d, a powerful tool to tackle turbulence problems with up to O(105) computational cores
,”
Int. J. Numer. Methods Fluids
67
(
11
),
1735
(
2011
).
31.
G. I.
Taylor
, “
Statistical theory of turbulence
,”
Proc. R. Soc. A
151
(
873
),
421
(
1935
).
32.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
33.
D.
Sumner
,
J.
Heseltine
, and
O.
Dansereau
, “
Wake structure of a finite circular cylinder of small aspect ratio
,”
Exp. Fluids
37
(
5
),
720
(
2004
).
34.
M.
Braza
,
R.
Perrin
, and
Y.
Hoarau
, “
Turbulence properties in the cylinder wake at high Reynolds numbers
,”
J. Fluids Struct.
22
(
6
),
757
(
2006
).
35.
Y.
Cuypers
,
A.
Maurel
, and
P.
Petitjeans
, “
Vortex burst as a source of turbulence
,”
Phys. Rev. Lett.
91
(
19
),
194502
(
2003
).
36.
Y.
Cuypers
,
A.
Maurel
, and
P.
Petitjeans
, “
Characterization of an experimental turbulent vortex in the physical and spectral spaces
,”
J. Turbul.
7
,
1
(
2006
).
37.
C.
Cichowlas
,
P.
Bonaiti
,
F.
Debbasch
, and
M.
Brachet
, “
Effective dissipation and turbulence in spectrally truncated Euler flows
,”
Phys. Rev. Lett.
95
,
264502
(
2005
).
38.
J.
Lumley
, “
Interpretation of time-spectra measured in high-intensity shear flows
,”
Phys. Fluids
8
,
1056
(
1965
).
39.
H.
Tennekes
, “
Eulerian and Lagrangian time microscales in isotropic turbulence
,”
J. Fluid Mech.
67
,
561
(
1975
).
40.
G.
Taylor
, “
The spectrum of turbulence
,”
Proc. R. Soc. A
164
,
476
(
1938
).
41.
C.
Lin
, “
On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equations
,”
J. Appl. Math.
10
(
4
),
154
(
1953
).
42.
W.
George
,
H.
Hussein
, and
S.
Woodward
, in
10th Australasian Fluid Mechanics Conference
(
Harvard University Press
,
Melbourne
,
1989
), Vol.
2
, pp.
11
15
.
43.
S.
Lee
,
S.
Lele
, and
P.
Moin
, “
Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow
,”
Phys. Fluids
4
(
7
),
1521
(
1992
).
44.
J.
del Alamo
and
J.
J. Jiménez
, “
Estimation of turbulent convection velocities and corrections to Taylor’s approximation
,”
J. Fluid Mech.
640
,
5
(
2009
).
45.
L.
Djenidi
,
S.
Tardu
, and
R.
Antonia
, “
Relationship between temporal and spatial averages in grid turbulence
,”
J. Fluid Mech.
730
,
593
(
2013
).
46.
A.
Cenedese
,
G.
Romano
, and
F. D.
Felice
, “
Experimental testing of Taylor’s hypothesis by L.D.A. in highly turbulent flow
,”
Exp. Fluids
11
(
6
),
351
(
1991
).
You do not currently have access to this content.