A direct numerical simulation of a turbulent pipe flow at a high Reynolds number of Reτ = 3008 over a long axial domain length (30R) was performed. The streamwise mean velocity followed the power law in the overlap region (y+ = 90–300; y/R = 0.03–0.1) based on the power law indicator function. The scale separation of the Reynolds shear stresses into two components of small- and large-scale motions (LSMs) revealed that the LSMs in the outer region played an important role in constructing the constant-stress layer and the mean velocity. In the pre-multiplied energy spectra of the streamwise velocity fluctuations, the bimodal distribution was observed at both short and long wavelengths. The kx−1 region associated with the attached eddies appeared in λx/R = 2–5 and λx/y = 18–160 at y+ = 90–300, where the power law was established in the same region. The kz−1 region also appeared in λz/R = 0.3–0.6 at y+ = 3 and 150. Linear growth of small-scale energy to large-scale energy induced the kx−1 region at high Reynolds numbers, resulting in a large population of the LSMs. This result supported the origin of very-large-scale motions in the pseudo-streamwise alignment of the LSMs. In the pre-multiplied energy spectra of the Reynolds shear stress, the bimodal distribution was observed without the kx−1 region.

1.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow
,”
J. Fluid Mech.
728
,
376
395
(
2013
).
2.
X.
Wu
and
P.
Moin
, “
A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow
,”
J. Fluid Mech.
608
,
81
112
(
2008
).
3.
C.
Chin
,
J. P.
Monty
, and
A.
Ooi
, “
Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers
,”
Int. J. Heat Fluid Flow
45
,
33
40
(
2014
).
4.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
5.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to Re ≈ 5200
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
6.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
7.
J. H.
Lee
and
H. J.
Sung
, “
Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations
,”
Phys. Fluids
25
,
045103
(
2013
).
8.
H. M.
Nagib
and
K. A.
Chauhan
, “
Variations of von Kármán coefficient in canonical flows
,”
Phys. Fluids
20
,
101518
(
2008
).
9.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
10.
B. J.
McKeon
,
J.
Li
,
W.
Jiang
,
J. F.
Morrison
, and
A. J.
Smits
, “
Further observations on the mean velocity distribution in fully developed pipe flow
,”
J. Fluid Mech.
501
,
135
147
(
2004
).
11.
J. P.
Monty
,
N.
Hutchins
,
H. C. H.
Ng
,
I.
Marusic
, and
M. S.
Chong
, “
A comparison of turbulent pipe, channel, and boundary layer flows
,”
J. Fluid Mech.
632
,
431
442
(
2009
).
12.
H. C. H.
Ng
,
J. P.
Monty
,
N.
Hutchins
,
M. S.
Chong
, and
I.
Marusic
, “
Comparison of turbulent channel and pipe flows with varying Reynolds number
,”
Exp. Fluids
51
,
1261
1281
(
2011
).
13.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
28
(
2007
).
14.
R.
Mathis
,
N.
Hutchins
, and
I.
Marusic
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
337
(
2009
).
15.
J.
Ahn
,
J. H.
Lee
,
S. J.
Jang
, and
H. J.
Sung
, “
Direct numerical simulations of fully developed turbulent pipe flows for Reτ = 180, 544, and 934
,”
Int. J. Heat Fluid Flow
44
,
222
228
(
2013
).
16.
K. C.
Kim
and
R. J.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
422
(
1999
).
17.
B. J.
Rosenberg
,
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers
,”
J. Fluid Mech.
731
,
46
63
(
2013
).
18.
J. C.
del Álamo
and
J.
Jiménez
, “
Estimation of turbulent convection velocities and correlations to Taylor’s approximation
,”
J. Fluid Mech.
640
,
5
26
(
2009
).
19.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
1976
).
20.
A. E.
Perry
,
S.
Henbest
, and
M. S.
Chong
, “
A theoretical and experimental study of wall turbulence
,”
J. Fluid Mech.
165
,
163
199
(
1986
).
21.
T. B.
Nickels
,
I.
Marusic
,
S.
Hafez
, and
M. S.
Chong
, “
Evidence of the k 1 1 law in a high-Reynolds-number turbulent boundary layer
,”
Phys. Rev. Lett.
95
,
074501
(
2005
).
22.
J. F.
Morrison
,
B. J.
McKeon
,
W.
Jiang
, and
A. J.
Smits
, “
Scaling of the streamwise velocity component in turbulent pipe flow
,”
J. Fluid Mech.
508
,
99
131
(
2004
).
23.
J.
Jiménez
, “
Near-wall turbulence
,”
Phys. Fluids
25
,
101302
(
2013
).
24.
K.
Kim
,
S. J.
Baek
, and
H. J.
Sung
, “
An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations
,”
Int. J. Numer. Methods Fluids
38
(
2
),
125
138
(
2002
).
25.
X.
Wu
,
J. R.
Baltzer
, and
R. J.
Adrian
, “
Direct numerical simulation of a 30R long turbulent pipe flow at R+ = 685: Large- and very large-scale motions
,”
J. Fluid Mech.
698
,
235
281
(
2012
).
26.
N.
Hutchins
,
T. B.
Nickels
,
I.
Marusic
, and
M. S.
Chong
, “
Hot-wire spatial resolution issues in wall-bounded turbulence
,”
J. Fluid Mech.
635
,
103
136
(
2009
).
27.
C.
Chin
,
N.
Hutchins
,
A.
Ooi
, and
I.
Marusic
, “
Spatial resolution correction for hot-wire anemometry in wall turbulence
,”
Exp. Fluids
50
,
1443
1453
(
2011
).
28.
C.
Chin
,
J.
Philip
,
J.
Klewicki
,
A.
Ooi
, and
I.
Marusic
, “
Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows
,”
J. Fluid Mech.
757
,
747
769
(
2014
).
29.
J.
Lee
,
J. H.
Lee
,
J.-I.
Choi
, and
H. J.
Sung
, “
Spatial organization of large-and very-large-scale motions in a turbulent channel flow
,”
J. Fluid Mech.
749
,
818
840
(
2014
).
30.
J.
Lee
,
J.
Ahn
, and
H. J.
Sung
, “
Comparison of large- and very-large-scale motions in turbulent pipe and channel flows
,”
Phys. Fluids
27
,
025101
(
2015
).
31.
B. J.
McKeon
and
K. R.
Sreenivasan
, “
Introduction: Scaling and structure in high Reynolds number wall-bounded flows
,”
Philos. Trans. R. Soc., A
365
,
635
646
(
2007
).
32.
J. H.
Lee
and
H. J.
Sung
, “
Very-large-scale motions in a turbulent boundary layer
,”
J. Fluid Mech.
673
,
80
120
(
2011
).
33.
D. J. C.
Dennis
and
T. B.
Nickels
, “
On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer
,”
J. Fluid Mech.
614
,
197
206
(
2008
).
34.
T. B.
Nickels
,
I.
Marusic
,
S.
Hafez
,
N.
Hutchins
, and
M. S.
Chong
, “
Some predictions of the attached eddy model for a high Reynolds number boundary layer
,”
Philos. Trans. R. Soc., A
365
,
807
822
(
2007
).
35.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Self-similar vortex clusters in the turbulent logarithmic region
,”
J. Fluid Mech.
561
,
329
358
(
2006
).
36.
J. R.
Baltzer
,
R. J.
Adrian
, and
X.
Wu
, “
Structural organization of large and very large scales in turbulent pipe flow simulation
,”
J. Fluid Mech.
720
,
236
279
(
2013
).
37.
S.
Pirozzoli
and
M.
Bernardini
, “
Probing high-Reynolds-number effects in numerical boundary layers
,”
Phys. Fluids
25
,
021704
(
2013
).
38.
M.
Bernardini
,
S.
Pirozzoli
, and
P.
Orlandi
, “
Velocity statistics in turbulent channel flow up to Reτ = 4000
,”
J. Fluid Mech.
742
,
171
191
(
2014
).
39.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulent structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
40.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
144
(
2004
).
You do not currently have access to this content.