Under conventionally neutral conditions, the boundary layer is frequently capped by an inversion layer, which counteracts vertical entrainment of kinetic energy. Very large wind farms are known to depend on vertical entrainment to transport energy from above the farm towards the turbines. In this study, large eddy simulations of an infinite wind-turbine array in a conventionally neutral atmospheric boundary layer are performed. By carefully selecting the initial potential-temperature profile, the influence of the height and the strength of a capping inversion on the power output of a wind farm is investigated. Results indicate that both the height and the strength have a significant effect on the boundary layer flow, and that the height of the neutral boundary layer is effectively controlled by the capping inversion. In addition, it is shown that the vertical entrainment rate decreases for increasing inversion strength or height. In our infinite wind-farm simulations, varying the inversion characteristics leads to differences in power extraction on the order of 13% ± 0.2% (for increasing the strength from 2.5 to 10 K), and 31% ± 0.4% (for increasing the height from 500 to 1500 m). A detailed analysis of the mean kinetic-energy equation is included, showing that the variation in power extraction originates from the work done by the driving pressure gradient related to the boundary layer height and the geostrophic angle, while entrainment of kinetic energy from the free atmosphere does not play a significant role. Also, the effect of inversion strength on power extraction is energetically not related to different amounts of energy entrained, but explained by a difference in boundary layer growth, leading to higher boundary layers for lower inversion strengths. We further present a simple analytical model that allows to obtain wind-farm power output and driving power for the fully developed regime as function of Rossby number and boundary layer height.

1.
S.
Frandsen
,
R.
Barthelmie
,
S.
Pryor
,
O.
Rathmann
,
S.
Larsen
,
J.
Højstrup
, and
M.
Thøgersen
, “
Analytical modelling of wind speed deficit in large offshore wind farms
,”
Wind Energy
9
(
1-2
),
39
53
(
2006
).
2.
S.
Wharton
and
J. K.
Lundquist
, “
Atmospheric stability affects wind turbine power collection
,”
Environ. Res. Lett.
7
(
1
),
014005
(
2012
).
3.
K. S.
Hansen
,
R.
Barthelmie
,
L. E.
Jensen
, and
A.
Sommer
, “
The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at horns rev wind farm
,”
Wind Energy
15
(
1
),
183
196
(
2012
).
4.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
5.
R.
Johnstone
and
G. N.
Coleman
, “
The turbulent ekman boundary layer over an infinite wind-turbine array
,”
J. Wind Eng. Ind. Aerodyn.
100
(
1
),
46
57
(
2012
).
6.
H.
Lu
and
F.
Porté-Agel
, “
Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
,”
Phys. Fluids
23
(
6
),
065101
(
2011
).
7.
M.
Abkar
and
F.
Porté-Agel
, “
The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms
,”
Energies
6
(
5
),
2338
2361
(
2013
).
8.
M.
Abkar
and
F.
Porté-Agel
, “
Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition
,”
Renewable Energy
70
(
0
),
142
152
(
2014
).
9.
C.
Hasager
,
A.
Peña
,
T.
Mikkelsen
,
S.-E.
Gryning
,
M.
Courtney
, and
P. B.
Sørensen
,
12MW: Final report, Report No. Risø-R-1690(EN), June
2009
.
10.
A.
Andren
,
A. R.
Brown
,
P. J.
Mason
,
J.
Graf
,
U.
Schumann
,
C.-H.
Moeng
, and
F. T. M.
Nieuwstadt
, “
Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes
,”
Q. J. R. Meteorol. Soc.
120
(
520
),
1457
1484
(
1994
).
11.
G. D.
Hess
and
J. R.
Garratt
, “
Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part I. Overview
,”
Boundary Layer Meteorol.
104
(
3
),
333
358
(
2002
).
12.
G. D.
Hess
and
J. R.
Garratt
, “
Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part II. Modelling observed conditions
,”
Boundary Layer Meteorol.
104
(
3
),
359
369
(
2002
).
13.
P. J.
Mason
, “
Large-eddy simulation of the convective atmospheric boundary layer
,”
J. Atmos. Sci.
46
(
11
),
1492
1516
(
1989
).
14.
C.-H.
Moeng
and
P. P.
Sullivan
, “
A comparison of shear- and buoyancy-driven planetary boundary layer flows
,”
J. Atmos. Sci.
51
(
7
),
999
1022
(
1994
).
15.
R. J.
Beare
,
M. K.
Macvean
,
A. A. M.
Holtslag
,
J.
Cuxart
,
I.
Esau
,
J.-C.
Golaz
,
M. A.
Jimenez
,
M.
Khairoutdinov
,
B.
Kosović
,
D.
Lewellen
,
T. S.
Lund
,
J. K.
Lundquist
,
A.
Mccabe
,
A. F.
Moene
,
Y.
Noh
,
S.
Raasch
, and
P. P.
Sullivan
, “
An intercomparison of large-eddy simulations of the stable boundary layer
,”
Boundary Layer Meteorol.
118
(
2
),
247
272
(
2006
).
16.
G. T.
Csanady
, “
Equilibrium theory of the planetary boundary layer with an inversion lid
,”
Boundary Layer Meteorol.
6
(
1-2
),
63
79
(
1974
).
17.
S. S.
Zilitinkevich
and
I. N.
Esau
, “
On integral measures of the neutral barotropic planetary boundary layer
,”
Boundary-Layer Meteorol.
104
(
3
),
371
379
(
2002
).
18.
J. C.
McWilliams
,
P. C.
Gallacher
,
C.-H.
Moeng
, and
J. C.
Wyngaard
, “
Modeling the oceanic planetary boundary layer
,” in
Large-Eddy Simulations of Complex Engineering and Geophysical Flows
, edited by
B.
Galperin
and
S. A.
Orszag
(
Cambridge University Press
,
1993
), pp.
441
454
.
19.
P. P.
Sullivan
,
J. C.
McWilliams
, and
C.-H.
Moeng
, “
A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows
,”
Boundary Layer Meteorol.
71
(
3
),
247
276
(
1994
).
20.
C.-L.
Lin
,
C.-H.
Moeng
,
P. P.
Sullivan
, and
J. C.
McWilliams
, “
The effect of surface roughness on flow structures in a neutrally stratified planetary boundary layer flow
,”
Phys. Fluids
9
(
11
),
3235
3249
(
1997
).
21.
I. N.
Esau
, “
Parameterization of a surface drag coefficient in conventionally neutral planetary boundary layer
,”
Ann. Geophys.
22
(
10
),
3353
3362
(
2004
).
22.
J. R.
Taylor
and
S.
Sarkar
, “
Direct and large eddy simulations of a bottom ekman layer under an external stratification
,” in
The Fifth International Symposium on Turbulence and Shear Flow Phenomena (TSFP5)
,
Int. J. Heat Fluid Flow
29
(
3
),
721
732
(
2008
).
23.
G. D.
Hess
, “
The neutral, barotropic planetary boundary layer, capped by a low-level inversion
,”
Boundary Layer Meteorol.
110
(
3
),
319
355
(
2004
).
24.
Z.
Sorbjan
, “
Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer
,”
J. Atmos. Sci.
53
(
14
),
2015
2024
(
1996
).
25.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
26.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer
,
1988
).
27.
S. P. S.
Arya
, “
Comments on similarity theory for the planetary boundary layer of time-dependent height
,”
J. Atmos. Sci.
32
(
4
),
839
840
(
1975
).
28.
S. P. S.
Arya
, “
Comparative effects of stability, baroclinity and the scale-height ratio on drag laws for the atmospheric boundary layer
,”
J. Atmos. Sci.
35
(
1
),
40
46
(
1978
).
29.
D. K.
Lilly
, “
Models of cloud-topped mixed layers under a strong inversion
,”
Q. J. R. Meteorol. Soc.
94
(
401
),
292
309
(
1968
).
30.
M.
Tjernström
and
A.-S.
Smedman
, “
The vertical turbulence structure of the coastal marine atmospheric boundary layer
,”
J. Geophys. Res.: Oceans
98
(
C3
),
4809
4826
, doi:10.1029/92JC02610 (
1993
).
31.
G. J.
Steeneveld
,
B. J. H.
van de Wiel
, and
A. A. M.
Holtslag
, “
Comments on deriving the equilibrium height of the stable boundary layer
,”
Q. J. R. Meteorol. Soc.
133
(
622
),
261
264
(
2007
).
32.
S. S.
Zilitinkevich
,
I. N.
Esau
, and
A.
Baklanov
, “
Further comments on the equilibrium height of neutral and stable planetary boundary layers
,”
Q. J. R. Meteorol. Soc.
133
(
622
),
265
271
(
2007
).
33.
H.
Tennekes
, “
A model for the dynamics of the inversion above a convective boundary layer
,”
J. Atmos. Sci.
30
(
4
),
558
567
(
1973
).
34.
J. A.
Businger
and
H.
Charnock
, “
Boundary layer structure in relation to larger-scale flow: Some remarks on the jasin observations
,”
Philos. Trans. R. Soc., A
308
(
1503
),
445
449
(
1983
).
35.
R. A.
Brost
,
D. H.
Lenschow
, and
J. C.
Wyngaard
, “
Marine stratocumulus layers. Part I: Mean conditions
,”
J. Atmos. Sci.
39
(
4
),
800
817
(
1982
).
36.
S.
Nicholls
, “
Aircraft observations of the ekman layer during the joint air-sea interaction experiment
,”
Q. J. R. Meteorol. Soc.
111
(
468
),
391
426
(
1985
).
37.
A. L. M.
Grant
, “
Observations of boundary layer structure made during the 1981 kontur experiment
,”
Q. J. R. Meteorol. Soc.
112
(
473
),
825
841
(
1986
).
38.
C.-H.
Moeng
, “
A large-eddy-simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
(
13
),
2052
2062
(
1984
).
39.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
(
2
),
025105
(
2005
).
40.
B.
Stevens
,
C.-H.
Moeng
, and
P. P.
Sullivan
, “
Entrainment and subgrid lengthscales in large-eddy simulations of atmospheric boundary-layer flows
,”
IUTAM Symposium on Developments in Geophysical Turbulence
,
Fluid Mechanics and Its Applications
Vol.
58
, edited by
R. M.
Kerr
and
Y.
Kimura
(
Springer
,
Netherlands
,
2000
), pp.
253
269
.
41.
P. J.
Mason
and
D. J.
Thomson
, “
Stochastic backscatter in large-eddy simulations of boundary layers
,”
J. Fluid Mech.
242
,
51
78
(
1992
).
42.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Advances in large-eddy simulation of a wind turbine wake
,”
J. Phys.: Conf. Ser.
75
(
1
),
012041
(
2007
).
43.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Large-eddy simulation of spectral coherence in a wind turbine wake
,”
Environ. Res. Lett.
3
(
1
),
015004
(
2008
).
44.
J.
Meyers
and
C.
Meneveau
, “Large eddy simulations of large wind-turbine arrays in the atmospheric boundary layer,” AIAA Paper 2010-827, 2010.
45.
J.
Meyers
and
C.
Meneveau
, “
Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms
,”
J. Fluid Mech.
715
,
335
358
(
2013
).
46.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary Layer Meteorol.
138
(
3
),
345
366
(
2011
).
47.
A.
Sescu
and
C.
Meneveau
, “
A control algorithm for statistically stationary large-eddy simulations of thermally stratified boundary layers
,”
Q. J. R. Meteorol. Soc.
140
(
683
),
2017
2022
(
2014
).
48.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
1988
).
49.
R. W. C. P.
Verstappen
and
A. E. P.
Veldman
, “
Symmetry-preserving discretization of turbulent flow
,”
J. Comput. Phys.
187
(
1
),
343
368
(
2003
).
50.
E.
Lindborg
, “
The energy cascade in a strongly stratified fluid
,”
J. Fluid Mech.
550
,
207
242
(
2006
).
51.
G.
Brethouwer
,
P.
Billant
,
E.
Lindborg
, and
J.-M.
Chomza
, “
Scaling analysis and simulation of strongly stratified turbulent flows
,”
J. Fluid Mech.
585
,
343
368
(
2007
).
52.
M. L.
Waite
, “
Stratified turbulence at the buoyancy scale
,”
Phys. Fluids
23
(
6
),
066602
(
2011
).
53.
S.
Khani
and
M. L.
Waite
, “
Buoyancy scale effects in large-eddy simulations of stratified turbulence
,”
J. Fluid Mech.
754
,
75
97
(
2014
).
54.
P. P.
Sullivan
,
J. B.
Edson
,
T.
Hristov
, and
J. C.
McWilliams
, “
Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves
,”
J. Atmos. Sci.
65
(
4
),
1225
1245
(
2008
).
55.
G.
Rampanelli
and
D.
Zardi
, “
A method to determine the capping inversion of the convective boundary layer
,”
J. Appl. Meteorol.
43
(
6
),
925
933
(
2004
).
56.
S. S.
Zilitinkevich
, “
Velocity profiles, the resistance law and the dissipation rate of mean flow kinetic energy in a neutrally and stably stratified planetary boundary layer
,”
Boundary Layer Meteorol.
46
(
4
),
367
387
(
1989
).
57.
J. S.
Schröter
,
A. F.
Moene
, and
A. A. M.
Holtslag
, “
Convective boundary layer wind dynamics and inertial oscillations: The influence of surface stress
,”
Q. J. R. Meteorol. Soc.
139
(
676
),
1694
1711
(
2013
).
58.
B.
Kosović
and
J. A.
Curry
, “
A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer
,”
J. Atmos. Sci.
57
(
8
),
1052
1068
(
2000
).
59.
J. W.
Deardorff
, “
Prediction of convective mixed-layer entrainment for realistic capping inversion structure
,”
J. Atmos. Sci.
36
(
3
),
424
436
(
1979
).
60.
M. C.
VanZanten
,
P. G.
Duynkerke
, and
J. W. M.
Cuijpers
, “
Entrainment parameterization in convective boundary layers
,”
J. Atmos. Sci.
56
(
6
),
813
828
(
1999
).
61.
S.
Frandsen
, “
On the wind speed reduction in the center of large clusters of wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
39
(
1-3
),
251
265
(
1992
).
62.
M.
Calaf
,
M. B.
Parlange
, and
C.
Meneveau
, “
Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers
,”
Phys. Fluids
23
(
12
),
126603
(
2011
).
63.
M. R.
Raupach
,
R. A.
Antonia
, and
S.
Rajagopalan
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
(
1
),
1
25
(
1991
).
64.
R. J.
Barthelmie
,
O.
Rathmann
,
S. T.
Frandsen
,
K. S.
Hansen
,
E.
Politis
,
J.
Prospathopoulos
,
K.
Rados
,
D.
Cabezón
,
W.
Schlez
,
J.
Phillips
,
A.
Neubert
,
J. G.
Schepers
, and
S. P.
van der Pijl
, “
Modelling and measurements of wakes in large wind farms
,”
J. Phys.: Conf. Ser.
75
(
1
),
012049
(
2007
).
65.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J. G.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E. S.
Politis
, and
P. K.
Chaviaropoulos
, “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
(
5
),
431
444
(
2009
).
66.
J.
Meyers
and
C.
Meneveau
, “
Optimal turbine spacing in fully developed wind farm boundary layers
,”
Wind Energy
15
(
2
),
305
317
(
2012
).
67.
F. T. M.
Nieuwstadt
, “
On the solution of the stationary, baroclinic Ekman-layer equations with a finite boundary-layer height
,”
Boundary Layer Meteorol.
26
(
4
),
377
390
(
1983
).
You do not currently have access to this content.