While the Hasimoto planar vortex filament is one of the few exact solutions to the local induction approximation (LIA) approximating the self-induced motion of a vortex filament, it is natural to wonder whether such a vortex filament solution would exist for the non-local Biot-Savart dynamics exactly governing the filament motion, and if so, whether the non-local effects would drastically modify the solution properties. Both helical vortex filaments and vortex rings are known to exist under both the LIA and non-local Biot-Savart dynamics; however, the planar filament is a bit more complicated. In the present paper, we demonstrate that a planar vortex filament solution does exist for the non-local Biot-Savart formulation, provided that a specific non-linear integral equation (governing the spatial structure of such a filament) has a non-trivial solution. By using the Poincaré–Lindstedt method, we are able to obtain an accurate analytical approximation to the solution of this integral equation under physically reasonable assumptions. To obtain these solutions, we approximate local effects near the singularity of the integral equation using the LIA and non-local effects using the Biot-Savart formulation. Mathematically, the results constitute an analytical solution to an interesting nonlinear singular integro-differential equation in space and time variables. Physically, these results show that planar vortex filaments exist and maintain their forms under the non-local Biot-Savart formulation, as one would hope. Due to the regularization approach utilized, we are able to compare the structure of the planar filaments obtained under both LIA and Biot-Savart formulations in a rather straightforward manner, in order to determine the role of the non-locality on the structure of the planar filament.

1.
R. J.
Arms
and
F. R.
Hama
, “
Localized-induction concept on a curved vortex and motion of an elliptic vortex ring
,”
Phys. Fluids
8
,
553
(
1965
).
2.
L. S.
Da Rios
, “
Sul moto d’un liquido indefinite con un filetto vorticoso di forma qualunque
,”
Rend. Circ. Mat. Palermo
22
,
117
(
1906
).
3.
H.
Hasimoto
, “
A soliton on a vortex filament
,”
J. Fluid Mech.
51
,
477
(
1972
).
4.
S.
Kida
, “
A vortex filament moving without change of form
,”
J. Fluid Mech.
112
,
397
(
1981
).
5.
R. L.
Ricca
,
D. C.
Samuels
, and
C. F.
Barenghi
, “
Evolution of vortex knots
,”
J. Fluid Mech.
391
,
29
(
1999
).
6.
E. B.
Sonin
, “
Dynamics of helical vortices and helical-vortex rings
,”
EPL
97
,
46002
(
2012
).
7.
R. L.
Ricca
, “
The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics
,”
Fluid Dyn. Res.
18
,
245
(
1996
).
8.
H.
Hasimoto
, “
Motion of a vortex filament and its relation to elastica
,”
J. Phys. Soc. Jpn.
31
,
293
(
1971
).
9.
S.
Gutiérrez
,
J.
Rivas
, and
L.
Vega
, “
Formation of singularities and self-similar vortex motion under the localized induction approximation
,”
Commun. Partial Differ. Equations
28
,
927
(
2003
).
10.
K. W.
Schwarz
, “
Three-dimensional vortex dynamics in superfluid 4He: Line-line and line-boundary interactions
,”
Phys. Rev. B
31
,
5782
(
1985
).
11.
B. V.
Svistunov
, “
Superfluid turbulence in the low-temperature limit
,”
Phys. Rev. B
52
,
3647
(
1995
).
12.
R. A.
Van Gorder
, “
Integrable stationary solution for the fully nonlinear local induction equation describing the motion of a vortex filament
,”
Theor. Comput. Fluid Dyn.
26
,
591
(
2012
).
13.
R. A.
Van Gorder
, “
Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex filament in the Cartesian form of the local induction approximation
,”
Phys. Rev. E
87
,
043203
(
2013
).
14.
S.
Kida
, “
Stability of a steady vortex filament
,”
J. Phys. Soc. Jpn.
51
,
1655
(
1982
).
15.
R. A.
Van Gorder
, “
Orbital stability for rotating planar vortex filaments in the Cartesian and arclength forms of the local induction approximation
,”
J. Phys. Soc. Jpn.
82
,
094005
(
2013
).
16.
Y.
Fukumoto
, “
Stationary configurations of a vortex filament in background flows
,”
Proc. R. Soc. A
453
,
1205
(
1997
).
17.
M.
Umeki
, “
A locally induced homoclinic motion of a vortex filament
,”
Theor. Comput. Fluid Dyn.
24
,
383
(
2010
).
18.
R. A.
Van Gorder
, “
Exact solution for the self-induced motion of a vortex filament in the arclength representation of the local induction approximation
,”
Phys. Rev. E
86
,
057301
(
2012
).
19.
H.
Zhou
, “
On the motion of slender vortex filaments
,”
Phys. Fluids
9
,
970
(
1997
).
20.
G.
Boffetta
,
A.
Celani
,
D.
Dezzani
,
J.
Laurie
, and
S.
Nazarenko
, “
Modeling kelvin wave cascades in superfluid helium
,”
J. Low Temp. Phys.
156
,
193
(
2009
).
21.
R. A.
Van Gorder
, “
Helical vortex filament motion under the non-local Biot-Savart model
,”
J. Fluid Mech.
762
,
141
-
155
(
2015
).
22.
R. A.
Van Gorder
, “
General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation
,”
Phys. Fluids
26
,
065105
(
2014
).
23.
R. A.
Van Gorder
, “
Dynamics of a planar vortex filament under the quantum local induction approximation
,”
Proc. R. Soc. A
470
,
20140341
(
2014
).
You do not currently have access to this content.