The evolution of a mono-disperse gravity current in the lock-exchange configuration is investigated by means of direct numerical simulations for various Reynolds numbers and settling velocities for the deposition. We limit our investigations to gravity currents over a flat bed in which density differences are small enough for the Boussinesq approximation to be valid. The concentration of particles is described in an Eulerian fashion by using a transport equation combined with the incompressible Navier-Stokes equations. The most interesting results can be summarized as follows: (i) the settling velocity is affecting the streamwise vortices at the head of the current with a substantial reduction of their size when the settling velocity is increased; (ii) when the Reynolds number is increased the lobe-and-cleft structures are merging more frequently and earlier in time, suggesting a strong Reynolds number dependence for the spatio-temporal evolution of the head of the current; (iii) the temporal imprint of the lobe-and-cleft structures can be recovered from the deposition map, suggesting that the deposition pattern is defined purely and exclusively by the structures at the front of the current.

1.
E.
Meiburg
and
B.
Kneller
, “
Turbidity currents and their deposits
,”
Annu. Rev. Fluid Mech.
42
,
135
(
2009
).
2.
B.
Kneller
and
W.
McCaffrey
, “
Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope: Deflection, reflection, and facies variation
,”
J. Sediment. Res.
69
(
5
),
980
(
1999
).
3.
R.
Britter
and
J.
Simpson
, “
Experiments on the dynamics of a gravity current head
,”
J. Fluid Mech.
88
,
223
(
1978
).
4.
T.
Nakajima
and
M.
Satoh
, “
The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan Sea
,”
Sedimentology
48
(
2
),
435
(
2001
).
5.
R.
Wynn
and
D.
Stow
, “
Classification and characterisation of deep-water sediment waves
,”
Mar. Geol.
192
(
1
),
7
(
2002
).
6.
N.
Izumi
, “
The formation of submarine gullies by turbidity currents
,”
J. Geophys. Res.: Oceans
109
(
c3
),
1
13
doi:10.1029/2003JC001898 (
2004
).
7.
J.
Simpson
,
Gravity Currents in the Environment and in the Laboratory
(
Cambridge University Press
,
1999
).
8.
H. H. E.
Huppert
, “
Gravity currents: A personal perspective
,”
J. Fluid Mech.
554
,
299
(
2006
).
9.
J.
Syvitski
,
C.
Alexander
,
M.
Field
,
J.
Gardner
,
D.
Orange
, and
J.
Yun
, “
Continental-slope sedimentation: The view from northern California
,”
Oceanography
9
,
163
(
1996
).
10.
A.
Zakeri
,
K.
Hoeg
, and
F.
Nadim
, “
Submarine debris flow impact on pipelines part I: Experimental investigation
,”
Coastal Eng.
55
(
12
),
1209
(
2008
).
11.
E.
Nisbet
and
D.
Piper
, “
Giant submarine landslides
,”
Nature
392
,
329
(
1998
).
12.
J.
Simpson
, “
Effects of the lower boundary on the head of a gravity current
,”
J. Fluid Mech.
53
(
4
),
759
(
1972
).
13.
M.
Hallworth
,
H.
Huppert
,
J.
Phillips
, and
R.
Sparks
, “
Entrainment into two-dimensional and axisymmetric turbulent gravity currents
,”
J. Fluid Mech.
308
,
289
(
1996
).
14.
J.
McElwaine
and
M.
Patterson
,
XXI International Congress of Theoretical and Applied Mechanics
(
Springer Verlag
,
Warsaw
,
2004
).
15.
A.
Jackson
,
B.
Turnbull
, and
R.
Munro
, “
Scaling for lobe and cleft patterns in particle-laden gravity currents
,”
Nonlinear Processes Geophys.
20
,
121
(
2013
).
16.
R.
Bonnecaze
,
H.
Huppert
, and
J.
Lister
, “
Particle-driven gravity currents
,”
J. Fluid Mech.
250
,
339
(
1993
).
17.
M.
Hallworth
,
A.
Hogg
, and
H.
Huppert
, “
Effects of external flow on compositional and particle gravity currents
,”
J. Fluid Mech.
359
,
109
(
1998
).
18.
C.
Härtel
,
E.
Meiburg
, and
F.
Necker
, “
Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries
,”
J. Fluid Mech.
418
,
189
(
2000
).
19.
C.
Härtel
,
F.
Carlsson
, and
M.
Thunblom
, “
Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability
,”
J. Fluid Mech.
418
,
213
(
2000
).
20.
F.
Necker
,
C.
Hartel
,
L.
Kleiser
, and
E.
Meiburg
, “
High-resolution simulations of particle-driven gravity currents
,”
Int. J. Multiphase Flow
28
,
279
(
2002
).
21.
F.
Necker
,
C.
Härtel
,
L.
Kleiser
, and
E.
Meiburg
, “
Mixing and dissipation in particle-driven gravity currents
,”
J. Fluid Mech.
545
,
339
(
2005
).
22.
L.
Espath
,
L.
Pinto
,
S.
Laizet
, and
J.
Silvestrini
, “
Two- and three-dimensional direct numerical simulation of particle-laden gravity currents
,”
Comput. Geosci.
63
,
9
(
2014
).
23.
M.
Nasr-Azadani
and
E.
Meiburg
, “
Turbidity currents interacting with three-dimensional seafloor topography
,”
J. Fluid Mech.
745
,
409
(
2014
).
24.
M.
Nasr-Azadani
and
E.
Meiburg
, “
Influence of seafloor topography on the depositional behavior of bi-disperse turbidity currents: A three-dimensional, depth-resolved numerical investigation
,”
Environ. Fluid Mech.
14
(
2
),
319
(
2014
).
25.
M.
Cantero
,
J.
Lee
,
S.
Balachandar
, and
M.
Garcia
, “
On the front velocity of gravity currents
,”
J. Fluid Mech.
586
,
1
(
2007
).
26.
M.
Cantero
,
S.
Balachandar
,
M.
García
, and
D.
Bock
, “
Turbulent structures in planar gravity currents and their influence on the flow dynamics
,”
J. Geophys. Res.
113
(
C8
),
1
22
, doi:10.1029/2007jc004645 (
2008
).
27.
S.
Ooi
,
G.
Constantinescu
, and
L.
Weber
, “
Numerical simulations of lock-exchange compositional gravity current
,”
J. Fluid Mech.
635
,
361
(
2009
).
28.
W. W. E.
Dietrich
, “
Settling velocity of natural particles
,”
Water Resour. Res.
18
(
6
),
1615
, doi:10.1029/WR018i006p01615 (
1982
).
29.
P.
Julien
,
Erosion and Sedimentation
(
Cambridge University Press
,
2010
).
30.
M.
Maxey
and
J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
(
4
),
883
(
1983
).
31.
B.
Lazaro
and
J.
Lasheras
, “
Particle dispersion in a turbulent, plane, free shear layer
,”
Phys. Fluids
1
(
6
),
1035
(
1989
).
32.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
33.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with the quasi-spectral accuracy
,”
J. Comput. Phys.
228
,
5989
(
2009
).
34.
S.
Laizet
and
N.
Li
, “
Incompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores
,”
Int. J. Numer. Methods Fluids
67
,
1735
(
2011
).
35.
F.
de Rooij
and
S.
Dalziel
, “
Time- and space-resolved measurements of deposition under turbidity currents
,”
Spec. Publs. Int. Ass. Sediment.
31
,
207
(
2001
).
36.
E.
Lamballais
,
V.
Fortune
, and
S.
Laizet
, “
Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation
,”
J. Comput. Phys.
230
(
9
),
3270
(
2011
).
37.
J.
Xu
,
M.
Noble
, and
L.
Rosenfeld
, “
In-situ measurements of velocity structure within turbidity currents
,”
Geophys. Res. Lett.
31
(
9
),
L09311
, doi:10.1029/2004gl019718 (
2004
).
38.
T.
Tokyay
,
G.
Constantinescu
, and
E.
Meiburg
, “
Tail structure and bed friction velocity distri1bution of gravity currents propagating over an array of obstacles
,”
J. Fluid Mech.
694
,
252
(
2012
).
39.
R.
Gautier
,
S.
Laizet
, and
E.
Lamballais
, “
A DNS study of jet control with microjets using an immersed boundary method
,”
Int. J. Comput. Fluid Dyn.
28
(
6–10
),
393
(
2014
).
You do not currently have access to this content.