The question whether the vortex dynamics and structure at small scales have significant influence on the statistics at large scales is addressed on the basis of quantitative comparison of two turbulent fields. One is a reference field generated by direct numerical simulation of turbulence of an incompressible fluid obeying the Navier-Stokes (NS) equation in a periodic box. The other is an artificial field in which the coherent vortical structures at small scales (∼η) that could be formed by the NS dynamics in the reference field are destroyed by an artificial computational operation, where η is the Kolmogorov micro-length scale. The comparison of the two fields suggests that the statistics at larger scale (≫η) are not sensitive to the exact vortex dynamics and structure, at least in the case studied here.

1.
Y.
Kaneda
,
T.
Ishihara
,
M.
Yokokawa
,
K.
Itakura
, and
A.
Uno
, “
Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box
,”
Phys. Fluids
15
,
L21
L24
(
2003
).
2.
A. N.
Kolmogorov
, “
Dissipation of energy in the locally isotropic turbulence
,”
Dokl. Akad. Nauk SSSR
32
,
16
18
(
1941
), reprinted in Proc. R. Soc. A434, 15–17 (1991).
3.
Y.
Kaneda
and
K.
Morishita
, “
Small-scale statistics and structure of turbulence—In the light of high resolution direct numerical simulation
,” in
Ten Chapters in Turbulence
, edited by
P. A.
Davidson
,
Y.
Kaneda
, and
K. R.
Sreenivasan
(
Cambridge University Press
,
Cambridge
,
2013
), pp.
1
42
.
4.
U.
Frisch
,
Turbulence
(
Cambridge University Press
,
Cambridge
,
1995
).
5.
J.
Jiménez
,
A. A.
Wray
,
P. G.
Saffman
, and
R. S.
Rogallo
, “
The structure of intense vorticity in isotropic turbulence
,”
J. Fluid Mech.
255
,
65
90
(
1993
).
6.
E. D.
Siggia
, “
Numerical study of small-scale intermittency in three-dimensional turbulence
,”
J. Fluid Mech.
107
,
375
406
(
1981
).
7.
S.
Douady
,
Y.
Couder
, and
M. E.
Brachet
, “
Direct observation of the intermittency of intense vorticity filaments in turbulence
,”
Phys. Rev. Lett.
67
,
983
986
(
1991
).
8.
U.
Piomelli
,
T. A.
Zang
,
C. G.
Speziale
, and
M. Y.
Hussaini
, “
On the large-eddy simulation of transitional wall-bounded flows
,”
Phys. Fluids A
2
,
257
265
(
1990
).
9.
J. A.
Domaradzki
,
W.
Liu
, and
M. E.
Brachet
, “
An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence
,”
Phys. Fluids A
5
,
1747
1759
(
1993
).
10.
T.
Aoyama
,
T.
Ishihara
,
Y.
Kaneda
,
M.
Yokokawa
,
K.
Itakura
, and
A.
Uno
, “
Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box
,”
J. Phys. Soc. Jpn.
74
,
3202
3212
(
2005
).
11.
J. M.
Wallace
, “
Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: What have we learned about turbulence?
,”
Phys. Fluids
21
,
021301
(
2009
).
12.
A.
Tsinober
,
E.
Kit
, and
T.
Dracos
, “
Experimental investigation of the field of velocity gradient in turbulent flows
,”
J. Fluid Mech.
242
,
169
192
(
1992
).
13.
Wm. T.
Ashurst
,
A. R.
Kerstein
,
R. M.
Kerr
, and
C. H.
Gibson
, “
Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence
,”
Phys. Fluids
30
,
2343
2353
(
1987
).
14.
L.
Chevillard
,
C.
Meneveau
,
L.
Biferale
, and
F.
Toschi
, “
Modeling the pressure Hessian and viscous Laplacian in turbulence: Comparisons with direct numerical simulation and implications on velocity gradient dynamics
,”
Phys. Fluids
20
,
101504
(
2008
).
15.
A.
Vincent
and
M.
Meneguzzi
, “
The dynamics of vorticity tubes in homogeneous turbulence
,”
J. Fluid Mech.
258
,
245
254
(
1994
).
16.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A
2
,
765
777
(
1990
).
17.
J.
Soria
,
R.
Sondergaard
,
B. J.
Cantwell
,
M. S.
Chong
, and
A. E.
Perry
, “
A study of the fine-scale motions of incompressible time-developing mixing layers
,”
Phys. Fluids
6
,
871
884
(
1994
).
18.
J.
Maurer
and
P.
Tabeling
, “
Local investigation of superfluid turbulence
,”
Europhys. Lett.
43
,
29
34
(
1998
).
19.
J.
Salort
,
C.
Baudet
,
B.
Castaing
,
B.
Chabaud
,
F.
Daviaud
,
T.
Didelot
,
P.
Diribarne
,
B.
Dubrulle
,
Y.
Gagne
,
F.
Gauthier
,
A.
Girard
,
B.
Hébral
,
B.
Rousset
,
P.
Thibault
, and
P.-E.
Roche
, “
Turbulent velocity spectra in superfluid flows
,”
Phys. Fluids
22
,
125102
(
2010
).
20.
V.
Borue
and
S. A.
Orszag
, “
Forced three-dimensional homogeneous turbulence with hyperviscosity
,”
Europhys. Lett.
29
,
687
692
(
1995
).
21.
N. E. L.
Hagen
and
A.
Brandenburg
, “
Inertial range scaling in numerical turbulence with hyperviscosity
,”
Phys. Rev. E
70
,
026405
(
2004
).
22.
K.
Yoshida
,
J.
Yamaguchi
, and
Y.
Kaneda
, “
Regeneration of small eddies by data assimilation in turbulence
,”
Phys. Rev. Lett.
94
,
014501
(
2005
).
You do not currently have access to this content.