A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

1.
L. P.
Chamorro
,
C.
Hill
,
S.
Morton
,
C.
Ellis
,
R. E. A.
Arndt
, and
F.
Sotiropoulos
, “
On the interaction between a turbulent open channel flow and an axial-flow turbine
,”
J. Fluid Mech.
716
,
658
670
(
2013
).
2.
V. L.
Okulov
, “
On the stability of multiple helical vortices
,”
J. Fluid Mech.
521
,
319
342
(
2004
).
3.
V. L.
Okulov
and
J. N.
Sørensen
, “
Stability of helical tip vortices in a rotor far wake
,”
J. Fluid Mech.
576
,
1
25
(
2007
).
4.
V. L.
Okulov
,
I. V.
Naumov
,
R. F.
Mikkelsen
,
I. K.
Kabardin
, and
J. N.
Sørensen
, “
A regular Strouhal number for large-scale instability in the far wake of a rotor
,”
J. Fluid Mech.
747
,
369
380
(
2014
).
5.
S.
Kang
,
X.
Yang
, and
F.
Sotiropoulos
, “
On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow
,”
J. Fluid Mech.
744
,
376
403
(
2014
).
6.
V. L.
Okulov
,
J. N.
Sørensen
, and
D. H.
Wood
, “
The rotor theories by professor joukowsky: Vortex theories
,”
Prog. Aerosp. Sci.
73
,
19
46
(
2015
).
7.
M.
Felli
,
R.
Camussi
, and
F.
Di Felice
, “
Mechanisms of evolution of the propeller wake in the transition and far fields
,”
J. Fluid Mech.
682
,
5
53
(
2011
).
8.
S. E.
Widnall
, “
The stability of a helical vortex filament
,”
J. Fluid Mech.
54
,
641
663
(
1972
).
9.
Y.
Hattori
and
Y.
Fukumoto
, “
Short-wavelength stability analysis of a helical vortex tube
,”
Phys. Fluids
21
,
014104
(
2009
).
10.
Y.
Hattori
and
Y.
Fukumoto
, “
Effects of axial flow on the stability of a helical vortex tube
,”
Phys. Fluids
24
,
054102
(
2012
).
11.
L. P.
Chamorro
,
S.-J.
Lee
,
D.
Olsen
,
C.
Milliren
,
J.
Marr
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Turbulence effects on a full-scale 2.5MW horizontal-axis wind turbine under neutrally stratified conditions
,”
Wind Energy
18
(
2
),
339
349
(
2015
).
12.
P.
Sørensen
,
A. D.
Hansen
, and
P. A. C.
Rosas
, “
Wind models for simulation of power fluctuations from wind farms
,”
J. Wind Eng. Ind. Aerodyn.
90
,
1381
1402
(
2002
).
13.
M. J.
Churchfield
,
S.
Lee
,
J.
Michalakes
, and
P. J.
Moriarty
, “
A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics
,”
J. Turbul.
13
(
14
),
1
32
(
2012
).
14.
U.
Fey
,
M.
König
, and
H.
Eckelmann
, “
A new Strouhal Reynolds number relationship for the circular cylinder in the range 47 < re < 2 × 105
,”
Phys. Fluids
10
,
1547
1549
(
1998
).
15.
D.
Goring
and
V.
Nikora
, “
Despiking acoustic doppler velocimeter data
,”
J. Hydraul. Eng.
128
,
117
126
(
2002
).
16.
G.
Voulgaris
and
J.
Trowbridge
, “
Evaluation of the acoustic doppler velocimeter (adv) for turbulence measurements
,”
J. Atmos. Oceanic Technol.
15
,
272
289
(
1998
).
17.
C.
García
,
M.
Cantero
,
Y.
Niño
, and
M.
García
, “
Turbulence measurements with acoustic doppler velocimeters
,”
J. Hydraul. Eng.
131
,
1062
1073
(
2005
).
18.
T.
Wei
and
C. R.
Smith
, “
Secondary vortices in the wake of circular cylinders
,”
J. Fluid Mech.
169
,
513
533
(
1986
).
19.
C. H. K.
Williamson
,
J.
Wu
, and
J.
Sheridan
, “
Scaling of streamwise vortices in wakes
,”
Phys. Fluids
7
,
2307
2309
(
1995
).
20.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
21.
L. P.
Chamorro
,
D. R.
Troolin
,
S.-J.
Lee
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine
,”
Exp. Fluids
54
,
1459
(
2013
).
22.
S.
Ivanell
,
R.
Mikkelsen
,
J. N.
Sørensen
, and
D.
Henningson
, “
Stability analysis of the tip vortices of a wind turbine
,”
Wind Energy
13
,
705
715
(
2010
).
23.
L. P.
Chamorro
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Reynolds number dependence of turbulence statistics in the wake of wind turbines
,”
Wind Energy
15
,
733
742
(
2011
).
You do not currently have access to this content.