We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10−4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F+ = feC/U0 = 0.5, the medium frequency (MF) F+ = 1.0, and the high frequency (HF) F+ = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F+ = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and merging. In the MF case, the vortex dynamics is at a transition state between the two modes. The low frequency actuation has the highest momentum rate during the blowing phase and substantially affects the flow upstream of the actuator and triggers early transition to turbulence. In the LF case, the transverse velocity has a 1%U0 pulsation at the position 18%C upstream of the actuator.

1.
P. B. S.
Lissaman
, “
Low-Reynolds-number airfoils
,”
Annu. Rev. Fluid Mech.
15
,
223
239
(
1983
).
2.
T. J.
Mueller
and
J. D.
DeLaurier
, “
Aerodynamics of small vehicles
,”
Annu. Rev. Fluid Mech.
35
,
89
111
(
2003
).
3.
D. J.
Pines
and
F.
Bohorquez
, “
Challenges facing future micro-air-vehicle development
,”
J. Aircr.
43
,
290
305
(
2006
).
4.
H. P.
Horton
, “
Laminar separation bubbles in two and three dimensional incompressible flow
,” Ph.D. thesis,
University of London
,
1968
.
5.
D.
Greenblatt
and
I. J.
Wygnanski
, “
The control of flow separation by periodic excitation
,”
Prog. Aerosp. Sci.
36
,
487
545
(
2000
).
6.
G.
Godard
and
M.
Stanislas
, “
Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators
,”
Aerosp. Sci. Technol.
10
,
181
191
(
2006
).
7.
L.
Huang
,
P. G.
Huang
,
R. P.
LeBeau
, and
T.
Hauser
, “
Numerical study of blowing and suction control mechanism on NACA0012 airfoil
,”
J. Aircr.
41
,
1005
1013
(
2004
).
8.
T. L.
Chng
,
A.
Rachman
,
H. M.
Tsai
, and
G.-C.
Zha
, “
Flow control of an airfoil via injection and suction
,”
J. Aircr.
46
,
291
300
(
2009
).
9.
N. O.
Packard
,
M. P.
Thake
, Jr.
,
C. H.
Bonilla
,
K.
Gompertz
, and
J. P.
Bons
, “
Active control of flow separation on a laminar airfoil
,”
AIAA J.
51
,
1032
1041
(
2013
).
10.
T.
Suzuki
,
T.
Colonius
, and
S.
Pirozzoli
, “
Vortex shedding in a two-dimensional diffuser: Theory and simulation of separation control by periodic mass injection
,”
J. Fluid Mech.
520
,
187
213
(
2004
).
11.
S. T.
Deng
,
L.
Jiang
, and
C. Q.
Liu
, “
DNS for flow separation control around an airfoil by pulsed jets
,”
Comput. Fluids
36
,
1040
1060
(
2007
).
12.
A.
Gross
and
H. F.
Fasel
, “
Active flow control for NACA 6-series airfoil at Re= 64,200
,”
AIAA J.
48
,
1889
1902
(
2010
).
13.
D.
Postl
,
W.
Balzer
, and
H. F.
Fasel
, “
Control of laminar separation using pulsed vortex generator jets: Direct numerical simulations
,”
J. Fluid Mech.
676
,
81
109
(
2011
).
14.
A.
Glezer
and
M.
Amitay
, “
Synthetic jets
,”
Annu. Rev. Fluid Mech.
34
,
503
529
(
2002
).
15.
M.
Gad-el-Hak
and
D. M.
Bushnell
, “
Separation control: Review
,”
J. Fluids Eng.
113
,
5
30
(
1991
).
16.
P. F.
Zhang
,
J. J.
Wang
, and
L. H.
Feng
, “
Review of zero-net-mass-flux jet and its application in separation flow control
,”
Sci. China, Ser. E: Technol. Sci.
51
,
1315
1344
(
2008
).
17.
A.
Avdis
,
S.
Lardeau
, and
M.
Leschziner
, “
Large eddy simulation of separated flow over a two-dimensional hump with and without control by means of a synthetic slot-jet
,”
Flow, Turbul. Combust.
83
,
343
370
(
2009
).
18.
T.
Suzuki
, “
Effects of a synthetic jet acting on a separated flow over a hump
,”
J. Fluid Mech.
547
,
331
359
(
2006
).
19.
A.
Naim
,
D.
Greenblatt
,
A.
Seifert
, and
I.
Wygnanski
, “
Active control of a circular cylinder flow at transitional Reynolds numbers
,”
Flow, Turbul. Combust.
78
,
383
407
(
2007
).
20.
J.
Dandois
,
E.
Garnier
, and
P.
Sagaut
, “
Numerical simulation of active separation control by a synthetic jet
,”
J. Fluid Mech.
574
,
25
58
(
2007
).
21.
M.
Amitay
,
D. R.
Smith
,
V.
Kibens
,
D. E.
arekh
, and
A.
Glezer
, “
Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators
,”
AIAA J.
39
,
361
370
(
2001
).
22.
A.
Seifert
and
L. G.
Pack
, “
Compressibility and excitation location effects on high Reynolds numbers active separation control
,”
J. Aircr.
40
,
110
119
(
2003
).
23.
N. A.
Buchmann
,
C.
Atkinson
, and
J.
Soria
, “
Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil
,”
Exp. Fluids
54
,
1
14
(
2013
).
24.
R.
Raju
,
R.
Mittal
, and
L.
Cattafesta
, “
Dynamics of airfoil separation control using zero-net mass-flux forcing
,”
AIAA J.
46
,
3103
3115
(
2008
).
25.
R. B.
Kotapati
,
R.
Mittal
, and
L. N.
Cattafesta
III
, “Numerical experiments in synthetic jet based separation control,” AIAA Paper 2006-0320, 2006.
26.
E.
Chatlynne
,
N.
Rumigny
,
M.
Amitay
, and
A.
Glezer
, “Virtual aero-shaping of a Clark-Y airfoil using synthetic jet actuators,” AIAA Paper 2001-0732, 2001.
27.
R.
Mittal
and
P.
Rampunggoon
, “
On the virtual aeroshaping effect of synthetic jets
,”
Phys. Fluids
14
,
1533
1536
(
2002
).
28.
G.
Godard
,
J.-M.
Foucaut
, and
M.
Stanislas
, “
Control of a decelerating boundary layer. Part 2: Optimization of slotted jets vortex generators
,”
Aerosp. Sci. Technol.
10
,
394
400
(
2006
).
29.
G.
Godard
and
M.
Stanislas
, “
Control of a decelerating boundary layer. Part 3: Optimization of round jets vortex generators
,”
Aerosp. Sci. Technol.
10
,
455
464
(
2006
).
30.
O.
Sahni
,
J.
Wood
,
K. E.
Jansen
, and
M.
Amitay
, “
Three-dimensional interactions between a finite-span synthetic jet and a crossflow
,”
J. Fluid Mech.
671
,
254
287
(
2011
).
31.
J. Z.
Wu
,
X. Y.
Lu
,
A. G.
Denny
,
M.
Fan
, and
J. M.
Wu
, “
Post-stall flow control on an airfoil by local unsteady forcing
,”
J. Fluid Mech.
371
,
21
58
(
1998
).
32.
R.
Duvigneau
and
M.
Visonneau
, “
Optimization of a synthetic jet actuator for aerodynamic stall control
,”
Comput. Fluids
35
,
624
638
(
2006
).
33.
R. B.
Kotapati
,
R.
Mittal
,
O.
Marxen
,
F.
Ham
,
D.
You
, and
L. N.
Cattafesta
, “
Nonlinear dynamics and synthetic-jet-based control of a canonical separated flow
,”
J. Fluid Mech.
654
,
65
97
(
2010
).
34.
A.
Seifert
and
L. G.
Pack
, “
Oscillatory control of separation at high Reynolds numbers
,”
AIAA J.
37
,
1062
1071
(
1999
).
35.
A.
Glezer
,
M.
Amitay
, and
A. M.
Honohan
, “
Aspects of low-and high-frequency actuation for aerodynamic flow control
,”
AIAA J.
43
,
1501
1511
(
2005
).
36.
G. B.
McCullough
and
D. E.
Gault
, “Examples of three representative types of airfoil-section stall at low speed,” Technical Report, TN-2502, NACA, 1951.
37.
P. K.
Chang
,
Control of Flow Separation
(
McGraw-Hill
,
1976
).
38.
D.
You
and
P.
Moin
, “
Active control of flow separation over an airfoil using synthetic jets
,”
J. Fluids Struct.
24
,
1349
1357
(
2008
).
39.
A.
Tuck
and
J.
Soria
, “
Separation control on a NACA 0015 airfoil using a 2D micro ZNMF jet
,”
Aircr. Eng. Aerosp. Technol.
80
,
175
180
(
2008
).
40.
L. E.
Jones
,
R. D.
Sandberg
, and
N. D.
Sandham
, “
Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence
,”
J. Fluid Mech.
602
,
175
207
(
2008
).
41.
Y.
Hoarau
,
M.
Braza
,
Y.
Ventikos
,
D.
Faghani
, and
G.
Tzabiras
, “
Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing
,”
J. Fluid Mech.
496
,
63
72
(
2003
).
42.
V.
Kitsios
,
L.
Cordier
,
J. P.
Bonnet
,
A.
Ooi
, and
J.
Soria
, “
On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation
,”
J. Fluid Mech.
683
,
395
416
(
2011
).
43.
J.
Fröhlich
,
C. P.
Mellen
,
W.
Rodi
,
L.
Temmerman
, and
M. A.
Leschziner
, “
Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions
,”
J. Fluid Mech.
526
,
19
66
(
2005
).
44.
Y.
Morinishi
,
T. S.
Lund
,
O. V.
Vasilyev
, and
P.
Moin
, “
Fully conservative higher order finite difference schemes for incompressible flow
,”
J. Comput. Phys.
143
,
90
124
(
1998
).
45.
T. A.
Zang
, “
On the rotation and skew-symmetric forms for incompressible flow simulations
,”
Appl. Numer. Math.
7
,
27
40
(
1991
).
46.
Y.
Zang
,
R. L.
Street
, and
J. R.
Koseff
, “
A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates
,”
J. Comput. Phys.
114
,
18
33
(
1994
).
47.
W. C.
Reynolds
and
A. K. M. F.
Hussain
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
,
263
288
(
1972
).
48.
B.
Cantwell
and
D.
Coles
, “
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
,”
J. Fluid Mech.
136
,
321
374
(
1983
).
49.
D. A.
Lyn
,
S.
Einav
,
W.
Rodi
, and
J. H.
Park
, “
A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder
,”
J. Fluid Mech.
304
,
285
319
(
1995
).
50.
M.
Hayakawa
and
F.
Hussain
, “
Three-dimensionality of organized structures in a plane turbulent wake
,”
J. Fluid Mech.
206
,
375
404
(
1989
).
51.
S.
Balachandar
,
R.
Mittal
, and
F. M.
Najjar
, “
Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies
,”
J. Fluid Mech.
351
,
167
199
(
1997
).
52.
M.
Breuer
and
N.
Jovičić
, “
Separated flow around a flat plate at high incidence: An LES investigation
,”
J. Turbul.
2
,
1
15
(
2001
).
53.
R.
Holman
,
Y.
Utturkar
,
R.
Mittal
,
B. L.
Smith
, and
L.
Cattafesta
, “
Formation criterion for synthetic jets
,”
AIAA J.
43
,
2110
2116
(
2005
).
54.
E.
Lamballais
,
J.
Silvestrini
, and
S.
Laizet
, “
Direct numerical simulation of flow separation behind a rounded leading edge: Study of curvature effects
,”
Int. J. Heat Fluid Flow
31
,
295
306
(
2010
).
You do not currently have access to this content.