This study investigates the inviscid, linear spatio-temporal stability of heated, compressible, and incompressible coaxial jet flows. The influence of the temperature ratio and the velocity ratio between the core jet and the bypass stream on the transition from convectively to absolutely unstable flows is studied numerically. The investigation shows that for coaxial jets, absolute instability can occur for considerably lower core-stream temperatures than for single jets. The reason for this modified stability character is the appearance of an additional unstable mode as a result of the outer velocity shear layer between the bypass stream and the ambient flow. The presence of two shear layers enables the interaction between otherwise free waves to give rise to new instabilities. When the bypass-stream velocity is increased, the classical absolute mode known from single jets (inner mode) is first stabilized and then destabilized for high bypass-stream velocities, whereas the outer mode reaches maximum spatio-temporal growth rates when the core-stream velocity is approximately equal to twice the bypass-stream velocity. Additionally, it is demonstrated that the spatio-temporal character of the modes is very sensitive to the shear-layer thickness and to the distance separating the two layers. Increasing the Mach number strongly dampens the onset of an absolute instability for both modes.

1.
A.
Michalke
, “
Survey on jet instability theory
,”
Prog. Aerosp. Sci.
21
,
159
199
(
1984
).
2.
D.
Perrault-Joncas
and
S.
Maslowe
, “
Linear stability of a compressible coaxial jet with continuous velocity and temperature profiles
,”
Phys. Fluids
20
,
074102
(
2008
).
3.
D.
Papamoschou
, “
New method for jet noise reduction in turbofan engines
,”
AIAA J.
42
,
2245
2253
(
2004
).
4.
C. K.
Tam
, “
Jet noise: Since 1952
,”
Theor. Comput. Fluid Dyn.
10
,
393
405
(
1998
).
5.
J. E.
Ffowcs Williams
and
A. J.
Kempton
, “
The noise from the large-scale structure of a jet
,”
J. Fluid Mech.
84
,
673
(
2006
).
6.
P. A.
Monkewitz
and
K.
Sohn
, “
Absolute instability in hot jets
,”
AIAA J.
26
,
911
916
(
1988
).
7.
P.
Jordan
and
T.
Colonius
, “
Wave packets and turbulent jet noise
,”
Annu. Rev. Fluid Mech.
45
,
173
195
(
2013
).
8.
P. J.
Morris
, “
The instability of high speed jets
,”
Int. J. Aeroacoustics
9
,
1
50
(
2010
).
9.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
10.
P.
Huerre
and
P. A.
Monkewitz
, “
Absolute and convective instabilities in free shear layers
,”
J. Fluid Mech.
159
,
151
168
(
1985
).
11.
P. A.
Monkewitz
,
D. W.
Bechert
,
B.
Barsikow
, and
B.
Lehmann
, “
Self-excited oscillations and mixing in a heated round jet
,”
J. Fluid Mech.
213
,
611
(
1990
).
12.
K.
Sreenivasan
,
S.
Raghu
, and
D.
Kyle
, “
Absolute instability in variable density round jets
,”
Exp. Fluids
7
,
309
317
(
1989
).
13.
S.
Jendoubi
and
P.
Strykowski
, “
Absolute and convective instability of axisymmetric jets with external flow
,”
Phys. Fluids
6
,
3000
3009
(
1994
).
14.
L.
Lesshafft
and
P.
Huerre
, “
Linear impulse response in hot round jets
,”
Phys. Fluids
19
,
024102
(
2007
).
15.
M. P.
Juniper
, “
The effect of confinement on the stability of non-swirling round jet/wake flows
,”
J. Fluid Mech.
605
,
227
252
(
2008
).
16.
V.
Srinivasan
,
M. P.
Hallberg
, and
P. J.
Strykowski
, “
Viscous linear stability of axisymmetric low-density jets: Parameters influencing absolute instability
,”
Phys. Fluids
22
,
024103
(
2010
).
17.
M. J.
Lighthill
, “
On sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. A
211
,
564
587
(
1952
).
18.
M.
Gloor
,
D.
Obrist
, and
L.
Kleiser
, “
Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow
,”
Phys. Fluids
25
,
084102
(
2013
).
19.
A.
Talamelli
and
I.
Gavarini
, “
Linear instability characteristics of incompressible coaxial jets
,”
Flow, Turbul. Combust.
76
,
221
240
(
2006
).
20.
S. A.
Schumaker
and
J. F.
Driscoll
, “
Mixing properties of coaxial jets with large velocity ratios and large inverse density ratios
,”
Phys. Fluids
24
,
055101
(
2012
).
21.
P.
Huerre
, “
Open shear flow instabilities
,” in
Perspectives in Fluid Dynamics
, edited by
G.
Batchelor
,
H.
Moffatt
, and
G.
Worster
(
Cambridge University Press
,
2000
), pp.
159
229
.
22.
J.-M.
Chomaz
, “
Transition to turbulence in open flows: What linear and fully nonlinear local and global theories tell us
,”
Eur. J. Mech. - B/Fluids
23
,
385
399
(
2004
).
23.
I.
Delbende
and
J.-M.
Chomaz
, “
Nonlinear convective/absolute instabilities in parallel two-dimensional wakes
,”
Phys. Fluids
10
,
2724
(
1998
).
24.
B.
Pier
and
P.
Huerre
, “
Nonlinear self-sustained structures and fronts in spatially developing wake flows
,”
J. Fluid Mech.
435
,
145
174
(
2001
).
25.
L.
Biancofiore
,
F.
Gallaire
, and
R.
Pasquetti
, “
Influence of confinement on a two-dimensional wake
,”
J. Fluid Mech.
688
,
297
320
(
2011
).
26.
L.
Lesshafft
,
P.
Huerre
,
P.
Sagaut
, and
M.
Terracol
, “
Nonlinear global modes in hot jets
,”
J. Fluid Mech.
554
,
393
(
2006
).
27.
L.
Lesshafft
,
P.
Huerre
, and
P.
Sagaut
, “
Frequency selection in globally unstable round jets
,”
Phys. Fluids
19
,
054108
(
2007
).
28.
F.
Gallaire
,
M.
Ruith
,
E.
Meiburg
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Spiral vortex breakdown as a global mode
,”
J. Fluid Mech.
549
,
71
80
(
2006
).
29.
B.
Pier
,
P.
Huerre
,
J.-M.
Chomaz
, and
A.
Couairon
, “
Steep nonlinear global modes in spatially developing media
,”
Phys. Fluids
10
,
2433
2435
(
1998
).
30.
J.-M.
Chomaz
, “
Fully nonlinear dynamics of parallel wakes
,”
J. Fluid Mech.
495
,
57
75
(
2003
).
31.
B.
Pier
,
P.
Huerre
, and
J.-M.
Chomaz
, “
Bifurcation to fully nonlinear synchronized structures in slowly varying media
,”
Phys. D
148
,
49
96
(
2001
).
32.
G.
Balestra
, “
Spatio-temporal linear stability analysis for heated coaxial jet flows
,” Master’s thesis (
ETH Zurich
,
2014
), available online at http://e-collection.library.ethz.ch.
33.
R. L.
Ash
and
M. R.
Khorrami
, “
Vortex stability
,” in
Fluid Vortices
,
Fluid Mechanics and its Applications
edited by
S. I.
Green
(
Springer
,
Netherlands
,
1995
), Vol.
30
, pp.
317
372
.
34.
O.
Zienkiewicz
,
D.
Kelly
, and
P.
Bettess
, “
The Sommerfeld (radiation) condition on infinite domains and its modelling in numerical procedures
,” in
Computing Methods in Applied Sciences and Engineering, 1977, I
,
Lecture Notes in Mathematics
edited by
R.
Glowinski
,
J.
Lions
, and
I.
Laboria
(
Springer
,
Berlin, Heidelberg
,
1979
), Vol.
704
, pp.
169
203
.
35.
R.
Peyret
,
Spectral Methods for Incompressible Viscous Flow
,
Applied Mathematical Sciences
Vol.
148
(
Springer
,
2002
).
36.
C.
Canuto
,
Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods: Fundamentals in Single Domains
,
Scientific Computation
(
Springer-Verlag
,
2007
).
37.
A.
Bayliss
,
A.
Class
, and
B. J.
Matkowsky
, “
Adaptive approximation of solutions to problems with multiple layers by Chebyshev pseudo-spectral methods
,”
J. Comput. Phys.
116
,
160
172
(
1995
).
38.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1999
).
39.
R. B.
Lehoucq
and
D. C.
Sorensen
, “
Deflation techniques for an implicitly restarted Arnoldi iteration
,”
SIAM J. Matrix Anal. Appl.
17
,
789
821
(
1996
).
40.
M. P.
Juniper
, “
The effect of confinement on the stability of two-dimensional shear flows
,”
J. Fluid Mech.
565
,
171
(
2006
).
41.
S.
Müller
, “
Numerical investigations of compressible turbulent swirling jet flows
,” Ph.D. thesis (
ETH Zürich
,
2007
), Diss. ETH No. 17375, available online at http://e-collection.library.ethz.ch.
42.
E.
Heifetz
and
J.
Methven
, “
Relating optimal growth to counterpropagating Rossby waves in shear instability
,”
Phys. Fluids
17
,
064107
(
2005
).
43.
L.
Biancofiore
and
F.
Gallaire
, “
Counterpropagating Rossby waves in confined plane wakes
,”
Phys. Fluids
24
,
074102
(
2012
).
44.
J. R.
Carpenter
,
E. W.
Tedford
,
E.
Heifetz
, and
G. A.
Lawrence
, “
Instability in stratified shear flow: Review of a physical interpretation based on interacting waves
,”
Appl. Mech. Rev.
64
,
060801
(
2011
).
You do not currently have access to this content.