A vortex close to a no-slip wall gives rise to the creation of new vorticity at the wall. This vorticity may organize itself into vortices that erupt from the separated boundary layer. We study how the eruption process in terms of the streamline topology is initiated and varies in dependence of the Reynolds number Re. We show that vortex structures are created in the boundary layer for Re around 600, but that these disappear again without eruption unless Re > 1000. The eruption process is topologically unaltered for Re up to 5000. Using bifurcation theory, we obtain a topological phase space for the eruption process, which can account for all observed changes in the Reynolds number range we consider. The bifurcation diagram complements previously analyzes such that the classification of topological bifurcations of flows close to no-slip walls with up to three parameters is now complete.

1.
H.
Kudela
and
Z. M.
Malecha
, “
Investigation of unsteady vorticity layer eruption induced by vortex patch using vortex particles method
,”
J. Theor. Appl. Mech.
45
,
785
800
(
2007
).
2.
H.
Kudela
and
Z. M.
Malecha
, “
Eruption of a boundary layer induced by a 2D vortex patch
,”
Fluid Dyn. Res.
41
,
055502
(
2009
).
3.
A. V.
Obabko
and
K. W.
Cassel
, “
Navier-Stokes solutions of unsteady separation induced by a vortex
,”
J. Fluid Mech.
465
,
99
130
(
2002
).
4.
J. C.
Williams
, “
Incompressible boundary-layer separation
,”
Annu. Rev. Fluid Mech.
9
,
113
144
(
1977
).
5.
S. K.
Robinson
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
,
601
639
(
1991
).
6.
T. L.
Doligalski
,
C. R.
Smith
, and
J. D. A.
Walker
, “
Vortex interactions with walls
,”
Annu. Rev. Fluid Mech.
26
,
573
616
(
1994
).
7.
A. T.
Degani
,
J. D. A.
Walker
, and
F. T.
Smith
, “
Unsteady separation past moving surfaces
,”
J. Fluid Mech.
375
,
1
38
(
1998
).
8.
J. A.
Ekaterinaris
and
M. F.
Platzer
, “
Computational prediction of airfoil dynamic stall
,”
Prog. Aerosp. Sci.
33
,
759
846
(
1998
).
9.
M.
Bross
and
D.
Rockwell
, “
Flow structure on a simultaneously pitching and rotating wing
,”
J. Fluid Mech.
756
,
354
383
(
2014
).
10.
W.-X.
Huang
and
H. J.
Sung
, “
Vortex shedding from a circular cylinder near a moving wall
,”
J. Fluids Struct.
23
,
1064
1076
(
2007
).
11.
A.
Rao
,
M.
Thompson
,
T.
Leweke
, and
K.
Hourigan
, “
The flow past a circular cylinder translating at different heights above a wall
,”
J. Fluids Struct.
41
,
9
21
(
2013
).
12.
P.
Reichl
,
K.
Hourigan
, and
M. C.
Thompson
, “
Flow past a cylinder close to a free surface
,”
J. Fluid Mech.
533
,
269
296
(
2005
).
13.
M.
Brøns
,
M. C.
Thompson
,
T.
Leweke
, and
K.
Hourigan
, “
Vorticity generation and conservation for two-dimensional interfaces and boundaries
,”
J. Fluid Mech.
758
,
63
93
(
2014
).
14.
P.
Orlandi
, “
Vortex dipole rebound from a wall
,”
Phys. Fluids A
2
,
1429
1436
(
1990
).
15.
D.
Sutherland
,
C.
Macaskill
, and
D. G.
Dritschel
, “
The effect of slip length on vortex rebound from a rigid boundary
,”
Phys. Fluids
25
,
093104
(
2013
).
16.
M. C.
Thompson
,
T.
Leweke
, and
K.
Hourigan
, “
Sphere–wall collisions: Vortex dynamics and stability
,”
J. Fluid Mech.
575
,
121
148
(
2007
).
17.
N.
Didden
and
C.-M.
Ho
, “
Unsteady separation in a boundary layer produced by an impinging jet
,”
J. Fluid Mech.
160
,
235
256
(
1985
).
18.
H. J.
Lugt
, “
The dilemma of defining a vortex
,” in
Recent Developments in Theoretical and Experimental Fluid Mechanics
, edited by
U.
Müller
,
K. G.
Roesner
, and
B.
Schmidt
(
Springer
,
1979
), pp.
309
321
.
19.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
20.
G.
Haller
, “
An objective definition of a vortex
,”
J. Fluid Mech.
525
,
1
26
(
2005
).
21.
W. R.
Dean
, “
Note on the motion of liquid near a position of separation
,”
Math. Proc. Cambridge Philos. Soc.
46
,
293
306
(
1950
).
22.
R.
Legendre
, “
Seperation de l’ecoulement laminaire tridimensionel
,”
La Recherche Aérospatiale
54
,
3
8
(
1958
).
23.
R.
Legendre
, “
Lignes de courant d’un ecoulement continu
,”
La Recherche Aérospatiale
105
,
3
9
(
1965
).
24.
J.
Délery
, “
Robert Legendre and Henri Werlé: Toward the elucidation of three-dimensional separation
,”
Annu. Rev. Fluid Mech.
33
,
129
154
(
2001
).
25.
M.
Tobak
and
D. J.
Peake
, “
Topology of three-dimensional separated flows
,”
Annu. Rev. Fluid Mech.
14
,
61
85
(
1982
).
26.
A. E.
Perry
and
H.
Hornung
, “
Some aspects of three-dimensional separation, part II: Vortex skeletons
,”
Zeitschrift für Flugwissenshaft und Weltraumforschung
8
,
155
160
(
1984
).
27.
A. E.
Perry
and
M. S.
Chong
, “
A description of eddying motions and flow patterns using critical-point concepts
,”
Annu. Rev. Fluid Mech.
19
,
125
155
(
1987
).
28.
P. G.
Bakker
,
Bifurcations in Flow Patterns
(
Klüver Academic Publishers
,
Dordrecht
,
1991
).
29.
M.
Brøns
, “
Topological fluid dynamics of interfacial flows
,”
Phys. Fluids
6
,
2730
2737
(
1994
).
30.
M.
Brøns
and
J. N.
Hartnack
, “
Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries
,”
Phys. Fluids
11
,
314
324
(
1999
).
31.
J. N.
Hartnack
, “
Streamline topologies near a fixed wall using normal forms
,”
Acta Mech.
136
,
55
75
(
1999
).
32.
M.
Brøns
, “
Streamline topology: Patterns in fluid flows and their bifurcations
,”
Adv. Appl. Mech.
41
,
1
42
(
2007
).
33.
A.
Deliceoğlu
, “
Topology of two-dimensional flow associated with degenerate dividing streamline on a free surface
,”
Eur. J. Appl. Math.
24
,
77
101
(
2013
).
34.
M.
Brøns
,
L. K.
Voigt
, and
J. N.
Sørensen
, “
Streamline topology of steady axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-covers
,”
J. Fluid Mech.
401
,
275
292
(
1999
).
35.
M.
Brøns
,
L. K.
Voigt
, and
J. N.
Sørensen
, “
Topology of vortex breakdown bubbles in a cylinder with a rotating bottom and a free surface
,”
J. Fluid Mech.
428
,
133
148
(
2001
).
36.
F.
Gürcan
and
A.
Deliceoğlu
, “
Streamline topologies near nonsimple degenerate points in two-dimensional flows with double symmetry away from boundaries and an application
,”
Phys. Fluids
17
,
093106
(
2005
).
37.
F.
Gürcan
,
A.
Deliceoğlu
, and
P. G.
Bakker
, “
Streamline topologies near a non-simple degenerate critical point close to a stationary wall using normal forms
,”
J. Fluid Mech.
539
,
299
311
(
2005
).
38.
F.
Gürcan
and
A.
Deliceoğlu
, “
Saddle connections near degenerate critical points in Stokes flow within cavities
,”
Appl. Math. Comput.
172
,
1133
1144
(
2006
).
39.
A. E.
Perry
,
M. S.
Chong
, and
T. T.
Lim
, “
The vortex-shedding process behind two-dimensional bluff bodies
,”
J. Fluid Mech.
116
,
77
90
(
1982
).
40.
M.
Brøns
,
B.
Jakobsen
,
K.
Niss
,
A. V.
Bisgaard
, and
L. K.
Voigt
, “
Streamline topology in the near wake of a circular cylinder at moderate Reynolds numbers
,”
J. Fluid Mech.
584
,
23
43
(
2007
).
41.
J.
Jiménez-Lozano
and
M.
Sen
, “
Streamline topologies of two-dimensional peristaltic flow and their bifurcations
,”
Chem. Eng. Process.: Process Intensif.
49
,
704
715
(
2010
).
42.
C.
Roy
,
N.
Schaeffer
,
S. L.
Dizès
, and
M.
Thompson
, “
Stability of a pair of co-rotating vortices with axial flow
,”
Phys. Fluids
20
,
094101
(
2008
).
43.
G. E.
Karniadakis
,
M.
Israeli
, and
S. A.
Orszag
, “
High-order splitting methods for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
97
,
414
443
(
1991
).
44.
G. E.
Karniadakis
and
S.
Sherwin
,
Spectral/hp Element Methods for Computational Fluid Dynamics
, 2nd ed. (
Oxford University Press
,
2005
).
45.
M. C.
Thompson
,
K.
Hourigan
,
A.
Cheung
, and
T.
Leweke
, “
Hydrodynamics of a particle impact on a wall
,”
Appl. Math. Modell.
30
(
11
),
1356
1369
(
2006
).
46.
M.
Andersen
, “
Topology of streamlines and vorticity contours for two-dimensional flows
,” Ph.D. thesis (
Department of Applied Mathematics and Computer Science, Technical University of Denmark
,
2013
).
47.
M.
Brøns
and
A. V.
Bisgaard
, “
Topology of vortex creation in the cylinder wake
,”
Theor. Comput. Fluid Dyn.
24
,
299
303
(
2010
).
48.
Y.
Ueda
,
T.
Kida
, and
M.
Iguchi
, “
Steady approach of unsteady low-Reynolds-number flow past two rotating circular cylinders
,”
J. Fluid Mech.
736
,
414
443
(
2013
).
You do not currently have access to this content.