Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.

1.
C. K.
Law
,
S. H.
Chung
, and
N.
Srinivasan
, “
Gas-phase quasi-steadiness and fuel vapor accumulation effects in droplet burning
,”
Combust. Flame
38
,
173
198
(
1980
).
2.
C. K.
Law
, “
Recent advances in droplet vaporization and combustion
,”
Prog. Energy Combust. Sci.
8
,
171
201
(
1982
).
3.
F. A.
Williams
,
Combustion Theory
, 2nd ed. (
Perseus Books
,
Reading, Massachusetts
,
1985
).
4.
G.
Godsave
, “
Studies of the combustion of drops in a fuel spray–The burning of single drops of fuel
,”
Symp. (Int.) Combust.
4
,
818
830
(
1953
).
5.
S.
Kumagai
and
H.
Isoda
, “
Combustion of fuel droplets in a falling chamber
,”
Symp. (Int.) Combust.
6
,
726
731
(
1957
).
6.
Y.
Nunome
,
S.
Kato
,
K.
Maruta
,
H.
Kobayashi
, and
T.
Niioka
, “
Flame propagation of n-decane spray in microgravity
,”
Proc. Combust. Inst.
29
,
2621
2626
(
2002
).
7.
H. H.
Chiu
and
T. M.
Liu
, “
Group combustion of liquid droplets
,”
Combust. Sci. Technol.
17
,
127
142
(
1977
).
8.
H. H.
Chiu
,
H. Y.
Kim
, and
E. J.
Croke
, “
Internal group combustion of liquid droplets
,”
Symp. (Int.) Combust.
19
,
971
980
(
1982
).
9.
R.
Reichenbach
,
D.
Squires
, and
S.
Penner
, “
Flame propagation in liquid-fuel droplet arrays
,”
Symp. (Int.) Combust.
8
,
1068
1073
(
1961
).
10.
T.
Brzustowski
,
A.
Sobiesiak
, and
S.
Wojcicki
, “
Flame propagation along an array of liquid fuel droplets at zero gravity
,”
Symp. (Int.) Combust.
18
,
265
273
(
1981
).
11.
S.
Kato
,
H.
Mizuno
,
H.
Kobayashi
, and
T.
Niioka
, “
Experiments on flame spread of a fuel droplet array in a high-pressure ambience
,”
JSME Int. J., Ser. B
41
,
322
330
(
1998
).
12.
M.
Mikami
,
H.
Oyagi
,
N.
Kojima
,
M.
Kikuchi
,
Y.
Wakashima
, and
S.
Yoda
, “
Microgravity experiments on flame spread along fuel-droplet arrays using a new droplet-generation technique
,”
Combust. Flame
141
,
241
252
(
2005
).
13.
M.
Kikuchi
,
T.
Arai
,
S.
Yoda
,
T.
Tsukamoto
,
A.
Umemura
,
M.
Uchida
,
M.
Kakei
, and
T.
Niioka
, “
Numerical study on flame propagation of a fuel droplet array in a high-temperature environment under microgravity
,”
Proc. Combust. Inst.
29
,
2611
2619
(
2002
).
14.
M.
Kikuchi
,
Y.
Wakashima
,
S.
Yoda
, and
M.
Mikami
, “
Numerical study on flame spread of an n-decane droplet array in different temperature environment under microgravity
,”
Proc. Combust. Inst.
30
,
2001
2009
(
2005
).
15.
J.
Sato
,
M.
Tsue
,
M.
Niwa
, and
M.
Kono
, “
Effects of natural convection on high-pressure droplet combustion
,”
Combust. Flame
82
,
142
150
(
1990
).
16.
H.
Kobayashi
,
J.
Park
,
T.
Iwahashi
, and
T.
Niioka
, “
Microgravity experiments on flame spread of an n-decane droplet array in a high-pressure environment
,”
Proc. Combust. Inst.
29
,
2603
2610
(
2002
).
17.
M.
Kim
,
S.
Chung
, and
O.
Fujita
, “
Effect of AC electric fields on flame spread over electrical wire
,”
Proc. Combust. Inst.
33
,
1145
1151
(
2011
).
18.
J. N.
Chung
,
P. S.
Ayyaswamy
, and
S. S.
Sadhal
, “
Laminar condensation on a moving drop. Part 2. Numerical solutions
,”
J. Fluid Mech.
139
,
131
144
(
1984
).
19.
C. H.
Chiang
,
M. S.
Raju
, and
W. A.
Sirignano
, “
Numerical analysis of convecting, vaporizing fuel droplet with variable properties
,”
Int. J. Heat Mass Transfer
35
,
1307
1324
(
1992
).
20.
A. T.
Shin
and
C. M.
Megaridis
, “
Thermocapillary flow effects on convective droplet evaporation
,”
Int. J. Heat Mass Transfer
39
,
247
257
(
1996
).
21.
A.
Prosperetti
and
G.
Tryggvason
,
Computational Methods for Multiphase Flow
(
Cambridge University Press
,
New York
,
2007
).
22.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
23.
S.
Osher
and
R.
Fedkiw
,
Level Set Methods and Dynamic Implicit Surfaces
(
Springer
,
New York
,
2002
).
24.
B.
Perot
and
R.
Nallapati
, “
A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows
,”
J. Comput. Phys.
184
,
192
214
(
2003
).
25.
E.
Uzgoren
,
J.
Sim
, and
W.
Shyy
, “
Marker-based, 3-d adaptive cartesian grid method for multiphase flow around irregular geometries
,”
Commun. Comput. Phys.
5
,
1
41
(2009). Available at http://www.global-sci.com/issue/abstract/readabs.php?vol=5&page=1&issue=1&ppage=41&year=2009.
26.
W.
Shyy
and
J.
Sim
, “
Computational modeling for multiphase flows, including microgravity and space applications
,”
Encyclopedia of Aerospace Engineering
, edited by
R.
Blockley
and
W.
Shyy
(
Wiley
,
2011
), Vol.
1
, Chap. 51, pp.
597
608
.
27.
D.
Juric
and
G.
Tryggvason
, “
Computations of boiling flows
,”
Int. J. Multiphase Flow
24
,
387
410
(
1998
).
28.
S.
Shin
and
D.
Juric
, “
Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity
,”
J. Comput. Phys.
180
,
427
470
(
2002
).
29.
G.
Son
and
V. K.
Dhir
, “
Numerical simulation of film boiling near critical pressures with a level set method
,”
J. Heat Transfer
120
,
183
192
(
1998
).
30.
S. W. J.
Welch
and
J.
Wilson
, “
A volume of fluid based method for fluid flows with phase change
,”
J. Comput. Phys.
160
,
662
682
(
2000
).
31.
J.
Sim
and
W.
Shyy
, “
Interfacial flow computations using adaptive Eulerian–Lagrangian method for spacecraft applications
,”
Int. J. Numer. Methods Fluids
68
,
1438
1456
(
2012
).
32.
E. W.
Lemmon
,
M. O.
McLinden
, and
D. G.
Friend
, “
Thermophysical properties of fluid systems
,” in
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD 20899
,
2014
), http://webbook.nist.gov.
33.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2003
).
34.
J. R. A.
Pearson
, “
On convection cells induced by surface tension
,”
J. Fluid Mech.
4
,
489
500
(
1958
).
35.
J.
Bragard
and
M. G.
Velarde
, “
Benard-marangoni convection: Planforms and related theoretical predictions
,”
J. Fluid Mech.
368
,
165
194
(
1998
).
You do not currently have access to this content.