The formation process of vortex rings in a viscoelastic liquid is studied experimentally considering a piston-cylinder arrangement. Initially, a vortex ring begins to form as fluid is injected from the cylinder into the tank in a manner similar to that observed for Newtonian liquids. For later times, when the piston ceases its motion, the flow changes dramatically. A secondary vortex with reversed spinning direction appears and grows to be as large in size as the original one. The formation process is studied by contrasting the evolution with that obtained for Newtonian liquids with equivalent Reynolds numbers and stroke ratios. We argue that the reversing flow, or negative vortex, results from the combined action of shear and extension rates produced during the vortex formation, in a process similar to that observed behind ascending bubbles and falling spheres in viscoelastic media.

1.
K.
Shariff
and
A.
Leonard
, “
Vortex rings
,”
Ann. Rev. Fluid Mech.
24
,
235
-
279
(
1992
).
2.
J. H.
Arakeri
,
D.
Das
,
A.
Krothapalli
, and
L.
Lourenco
, “
Vortex ring formation a the open end of a shock tube: A particle image velocimetry study
,”
Phys. Fluids
16
,
1008
-
1018
(
2004
).
3.
O.
Velasco-Fuentes
, “
Early observations and experiments on ring vortices
,”
Eur. J. Mech. B/Fluids
43
,
166
-
171
(
2014
).
4.
D. G.
Akhmetov
,
Vortex Rings
(
Springer
,
2009
).
5.
R. W.
Whittlesey
and
J. O.
Dabiri
, “
Optimal vortex formation in a self-propelled vehicle
,”
J. Fluid Mech.
737
,
78
-
104
(
2013
).
6.
A. A.
Moslemi
and
P. S.
Krueger
, “
Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle
,”
Bioinspir. Biomim.
5
,
036003
(
2010
).
7.
G. K.
Lucey
, “Vortex ring generator: Mechanical engineering design for 100-kpsi operating pressures,” ARL-TR-2096, United States Army Research Laboratory, Adelphi, MD, 2000.
8.
L.
Yu
,
W.
Guo
,
M.
Sun
, and
J.
He
, “
Design and experiment of vortex rings umbrella based on finite element method
,”
Adv. Mater. Res.
785–786
,
1225
-
1228
(
2013
).
9.
J. O.
Dabiri
,
S. P.
Colin
, and
J. H.
Costello
, “
Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake
,”
J. Exp. Biol.
209
,
2025
-
2033
(
2006
).
10.
E. J.
Anderson
and
M. A.
Grosenbaugh
, “
Jet flow in steadily swimming adult squid
,”
J. Exp. Biol.
208
,
1125
-
1146
(
2005
).
11.
I. K.
Bartol
,
P. S.
Krueger
,
W. J.
Stewart
, and
J. T.
Thompson
, “
Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: Evidence of multiple jet ‘modes’ and their implications for propulsive efficiency
,”
J. Exp. Biol.
212
,
1889
-
1903
(
2009
).
12.
M.
Gharib
,
E.
Rambod
,
A.
Kheradvar
, and
D. J.
Sahn
, “
Optimal vortex formation as an index of cardiac health
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
6305
-
6308
(
2006
).
13.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids I. Identification and demarcation of flow regimes
,”
J. Non-Newtonian Fluid Mech.
110
,
143
-
176
(
2003
).
14.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids II. Flow characteristics
,”
J. Non-Newtonian Fluid Mech.
110
,
177
-
193
(
2003
).
15.
G.
Böhme
,
L.
Rubart
, and
M.
Stenger
, “
Vortex breakdown in shear-thinning liquids: Experiment and numerical simulation
,”
J. Non-Newtonian Fluid Mech.
45
,
1
-
20
(
1992
).
16.
C.
Goddard
and
O.
Hess
, “
Low Reynolds number turbulence in nonlinear Maxwell-model fluids
,”
Phys. Rev. E
81
,
036310
(
2010
).
17.
M.
Torralba
,
A. A.
Castrejón-Pita
,
G.
Hernández
,
G.
Huelsz
,
J. A.
del Río
, and
J.
Ortín
, “
Instabilities in the oscillatory flow of a complex fluid
,”
Phys. Rev. E
75
,
056307
(
2007
).
18.
C.
Palacios-Morales
and
R.
Zenit
, “
The formation of vortex rings in shear-thinning liquids
,”
J. Non-Newtonian Fluid Mech.
194
,
1
-
13
(
2013
).
19.
L.
Casanellas
and
J.
Ortín
, “
Vortex ring formation in oscillatory pipe flow of wormlike micellar solutions
,”
J. Rheol.
58
,
149
-
181
(
2014
).
20.
E.
Soto
,
C.
Goujon
,
R.
Zenit
, and
O.
Manero
, “
A study of velocity discontinuity for single air bubbles rising in an associative polymer
,”
Phys. Fluids
18
,
121510
(
2006
).
21.
A. J.
Mendoza-Fuentes
,
R.
Montiel
,
R.
Zenit
, and
O.
Manero
, “
On the flow of associative polymers past a sphere: Evaluation of negative wake criteria
,”
Phys. Fluids
21
,
033104
(
2009
).
22.
J. R.
Herrera-Velarde
,
R.
Zenit
,
D.
Chehata
, and
B.
Mena
, “
The flow of non-Newtonian fluids around bubbles and its connection to the jump discontinuity
,”
J. Non-Newtonian Fluid Mech.
111
,
199
-
209
(
2003
).
23.
M. D.
Graham
, “
Drag reduction and the dynamics of turbulence in simple and complex fluids
,”
Phys. Fluids
26
,
101301
(
2014
).
24.
C.
Palacios-Morales
and
R.
Zenit
, “
Vortex ring formation for low Re numbers
,”
Acta Mech.
224
,
383
-
397
(
2013
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4919949 for details about the experimental setup (Section I), the PIV system (Section II) and the rheological characterization of the viscoelastic fluid (Section III). The parameters to obtain the velocity fields with the PIV system are listed. Fits for both the shear viscosity and first normal stress difference are shown to obtain the power index,n, the constancy, m, and the relaxation time, λ, of the viscoelastic fluid.
26.
J. R.
Velez-Cordero
,
D.
Samano
, and
R.
Zenit
, “
Study of the properties of bubbly flows in Boger-type fluids
,”
J. Non-Newtonian Fluid Mech.
175–176
,
1
-
9
(
2012
).
27.
M.
Gharib
,
E.
Rambod
, and
K.
Shariff
, “
A universal time scale for vortex ring formation
,”
J. Fluid Mech.
360
,
121
-
140
(
1998
).
28.
H. A.
Barnes
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier
,
1989
).
29.
P. P.
Niiler
and
A. C.
Pipkin
, “
Finite amplitude shear waves in some non-Newtonian fluids
,”
Int. J. Eng. Sci.
2
,
305
-
313
(
1964
).

Supplementary Material

You do not currently have access to this content.