We perform numerical simulations of turbulent convection for infinite Prandtl number with free-slip walls and study the dynamics of flow reversals. We show interesting correlations between the flow reversals and the nonlinear interactions among the large-scale flow structures represented by the modes (1, 1), (2, 1), (3, 1), and some others. After a flow reversal, the odd modes, e.g., (1, 1) and (3, 1), switch sign, but the even modes, e.g., (2, 2), retain their sign. The mixed modes (1, 2) and (2, 1) fluctuate around zero. Using the properties of the modes and their interactions, we show that they form a Klein four-group Z2 × Z2. We also show that for the free-slip boundary condition, the corner rolls and vortex reconnection are absent during a flow reversal, in contrast to active role played by them in flow reversals for the no-slip boundary condition. We argue that the flow reversals with the no-slip and free-slip boundary conditions are different because they are induced by nonlinearities (u ⋅ ∇)u and (u ⋅ ∇) θ, respectively.

1.
S.
Cioni
,
S.
Ciliberto
, and
J.
Sommeria
, “
Strongly turbulent Rayleigh–Bénard convection in mercury: Comparison with results at moderate Prandtl number
,”
J. Fluid Mech.
335
,
111
(
1997
).
2.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
Turbulent convection at very high Rayleigh numbers
,”
Nature
404
,
837
840
(
2000
).
3.
E.
Brown
,
A.
Nikolaenko
, and
G.
Ahlers
, “
Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection
,”
Phys. Rev. Lett.
95
,
084503
(
2005
).
4.
E.
Brown
and
G.
Ahlers
, “
Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
568
,
351
386
(
2006
).
5.
P. K.
Mishra
,
A. K.
De
,
M. K.
Verma
, and
V.
Eswaran
, “
Dynamics of reorientations and reversals of large-scale flow in Rayleigh–Bénard convection
,”
J. Fluid Mech.
668
,
480
499
(
2011
).
6.
M.
Chandra
and
M. K.
Verma
, “
Dynamics and symmetries of flow reversals in turbulent convection
,”
Phys. Rev. E
83
,
067303
(
2011
).
7.
M.
Chandra
and
M. K.
Verma
, “
Flow reversals in turbulent convection via vortex reconnections
,”
Phys. Rev. Lett.
110
,
114503
(
2013
).
8.
K.
Sugiyama
,
R.
Ni
,
R. J. A. M.
Stevens
,
T.
Chan
,
S. Q.
Zhou
,
H. D.
Xi
,
C.
Sun
,
S.
Grossmann
,
K. Q.
Xia
, and
D.
Lohse
, “
Flow reversals in thermally driven turbulence
,”
Phys. Rev. Lett.
105
,
034503
(
2010
).
9.
M.
Breuer
and
U.
Hansen
, “
Turbulent convection in the zero Reynolds number limit
,”
Europhys. Lett.
86
,
24004
(
2009
).
10.
K.
Petschel
,
M.
Wilczek
,
M.
Breuer
,
R.
Friedrich
, and
U.
Hansen
, “
Statistical analysis of global wind dynamics in vigorous Rayleigh–Bénard convection
,”
Phys. Rev. E
84
,
026309
(
2011
).
11.
H. D.
Xi
and
K. Q.
Xia
, “
Cessations and reversals of the large-scale circulation in turbulent thermal convection
,”
Phys. Rev. E
75
,
066307
(
2007
).
12.
H. D.
Xi
and
K. Q.
Xia
, “
Flow mode transitions in turbulent thermal convection
,”
Phys. Fluids
20
,
055104
(
2008
).
13.
J.
Wicht
and
P.
Olson
, “
A detailed study of the polarity reversal mechanism in a numerical dynamo model
,”
Geochem., Geophys., Geosyst.
5
,
Q03H10
, doi:10.1029/2003gc000602 (2004).
14.
B.
Gallet
,
J.
Herault
,
C.
Laroche
,
F.
Pétrélis
, and
S.
Fauve
, “
Reversals of a large-scale field generated over a turbulent background
,”
Geophys. Astrophys. Fluid Dyn.
106
,
468
492
(
2012
).
15.
A.
Pandey
,
M. K.
Verma
, and
P. K.
Mishra
, “
Scalings of heat flux and energy spectrum for very large Prandtl number convection
,”
Phys. Rev. E
89
,
023006
(
2014
).
16.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
231
(
2005
).
17.
E. P.
van der Poel
,
R. J. A. M.
Stevens
, and
D.
Lohse
, “
Connecting flow structures and heat flux in turbulent Rayleigh–Bénard convection
,”
Phys. Rev. E
84
,
045303(R)
(
2011
).
18.
M. K.
Verma
,
A. G.
Chatterjee
,
K. S.
Reddy
,
R. K.
Yadav
,
S.
Paul
,
M.
Chandra
, and
R.
Samtaney
, “
Benchmarking and scaling studies of a pseudospectral code tarang for turbulence simulations
,”
Pramana
81
,
617
629
(
2013
).
19.
P. K.
Mishra
and
M. K.
Verma
, “
Energy spectra and fluxes for Rayleigh–Bénard convection
,”
Phys. Rev. E
81
,
056316
(
2010
).
20.
P. F.
Fischer
, “
An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
133
,
84
101
(
1997
).
You do not currently have access to this content.