Shearing and rotational forces in fluids can significantly alter the transport of momentum. A numerical investigation was undertaken to study the role of these forces using plane Couette flow subject to rotation about an axis perpendicular to both wall-normal and streamwise directions. Using a set of progressively higher Reynolds numbers up to Re = 5200, we find that the momentum flux, measured by the wall shear stress, for a given Re is a non-monotonic function of rotation number, Ro. For low-to-moderate Reynolds numbers, we find a maximum that is associated with flow fields that are dominated by downstream vortices and calculations of 2D vortices capture the maximum also quantitatively. For higher Reynolds numbers, a second stronger maximum emerges at smaller rotation numbers, closer to non-rotating plane Couette flow. It is carried by flows with a markedly 3D structure and cannot be captured by 2D vortex studies. As the Reynolds number increases, this maximum becomes stronger and eventually overtakes the one associated with the 2D flow state.

1.
M. F. A.
Couette
,
Études sur le Frottement des Liquides
(
Gauthiers-Villars
,
1890
).
2.
G. I.
Taylor
, “
Fluid friction between rotating cylinders. I. Torque measurements
,”
Proc. R. Soc. London, Ser. A
157
(
892
),
546
564
(
1936
).
3.
J.
Guckenheimer
, “
Strange attractors in fluid dynamics
,” in
Dynamical Systems and Chaos
,
Lecture Notes in Physics
Vol.
179
, edited by
L.
Garrido
(
Springer
,
Berlin, Heidelberg
,
1983
), pp.
149
156
.
4.
D.
Coles
, “
Transition in circular Couette flow
,”
J. Fluid Mech.
21
(
03
),
385
425
(
1965
).
5.
M. S.
Paoletti
and
D. P.
Lathrop
, “
Angular momentum transport in turbulent flow between independently rotating cylinders
,”
Phys. Rev. Lett.
106
,
024501
(
2011
).
6.
D. P. M.
van Gils
,
S. G.
Huisman
,
G.-W.
Bruggert
,
C.
Sun
, and
D.
Lohse
, “
Torque scaling in turbulent Taylor-Couette flow with co- and counterrotating cylinders
,”
Phys. Rev. Lett.
106
,
024502
(
2011
).
7.
S. G.
Huisman
,
D. P. M.
van Gils
,
S.
Grossmann
,
C.
Sun
, and
D.
Lohse
, “
Ultimate turbulent Taylor-Couette flow
,”
Phys. Rev. Lett.
108
,
024501
(
2012
).
8.
F.
Wendt
,
Turbulente Strömungen Zwischen Zwei Rotierenden Konaxialen Zylindern
(
Pöppinghaus
,
1933
).
9.
G. P.
Smith
and
A.
Townsend
, “
Turbulent Couette flow between concentric cylinders at large Taylor numbers
,”
J. Fluid Mech.
123
,
187
217
(
1982
).
10.
D. P.
Lathrop
,
J.
Fineberg
, and
H. L.
Swinney
, “
Turbulent flow between concentric rotating cylinders at large Reynolds number
,”
Phys. Rev. Lett.
68
(
10
),
1515
1518
(
1992
).
11.
D. P.
Lathrop
,
J.
Fineberg
, and
H. L.
Swinney
, “
Transition to shear-driven turbulence in Couette-Taylor flow
,”
Phys. Rev. A
46
(
10
),
6390
(
1992
).
12.
G. S.
Lewis
and
H. L.
Swinney
, “
Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow
,”
Phys. Rev. E
59
(
5
),
5457
(
1999
).
13.
F.
Ravelet
,
R.
Delfos
, and
J.
Westerweel
, “
Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor-Couette flow
,”
Phys. Fluids
22
(
5
),
055103
(
2010
).
14.
B.
Eckhardt
,
S.
Grossmann
, and
D.
Lohse
, “
Scaling of global momentum transport in Taylor-Couette and pipe flow
,”
Eur. Phys. J. B
18
(
3
),
541
544
(
2000
).
15.
B.
Dubrulle
and
F.
Hersant
, “
Momentum transport and torque scaling in Taylor-Couette flow from an analogy with turbulent convection
,”
Eur. Phys. J. B
26
(
3
),
379
386
(
2002
).
16.
A.
Racina
and
M.
Kind
, “
Specific power input and local micromixing times in turbulent Taylor-Couette flow
,”
Exp. Fluids
41
(
3
),
513
522
(
2006
).
17.
B.
Eckhardt
,
S.
Grossmann
, and
D.
Lohse
, “
Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders
,”
J. Fluid Mech.
581
(
1
),
221
250
(
2007
).
18.
B.
Eckhardt
,
S.
Grossmann
, and
D.
Lohse
, “
Fluxes and energy dissipation in thermal convection and shear flows
,”
Europhys. Lett.
78
(
2
),
24001
(
2007
).
19.
F. H.
Busse
, “
The twins of turbulence research
,”
Physics
5
,
4
(
2012
).
20.
H. J.
Brauckmann
and
B.
Eckhardt
, “
Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re = 30 000
,”
J. Fluid Mech.
718
,
398
427
(
2012
).
21.
R.
Ostilla
,
R. J. A. M.
Stevens
,
S.
Grossmann
,
R.
Verzicco
, and
D.
Lohse
, “
Optimal Taylor-Couette flow: Direct numerical simulations
,”
J. Fluid Mech.
719
,
14
46
(
2013
).
22.
D. P. M.
van Gils
,
S. G.
Huisman
,
S.
Grossmann
,
C.
Sun
, and
D.
Lohse
, “
Optimal Taylor-Couette turbulence
,”
J. Fluid Mech.
706
,
118
149
(
2012
).
23.
H. J.
Brauckmann
and
B.
Eckhardt
, “
Intermittent boundary layers and torque maxima in Taylor-Couette flow
,”
Phys. Rev. E
87
,
033004
(
2013
).
24.
S.
Merbold
,
H. J.
Brauckmann
, and
C.
Egbers
, “
Torque measurements and numerical determination in differentially rotating wide gap Taylor-Couette flow
,”
Phys. Rev. E
87
(
2
),
023014
(
2013
).
25.
P.
Chossat
and
G.
Iooss
, “
Primary and secondary bifurcations in the Couette-Taylor problem
,”
Jpn. J. Appl. Math.
2
(
1
),
37
68
(
1985
).
26.
N.
Tillmark
and
P. H.
Alfredsson
, “
Experiments on rotating plane Couette flow
,” in
Advances in Turbulence VI
,
Fluid Mechanics and its Applications
Vol.
36
, edited by
S.
Gavrilakis
,
L.
Machiels
, and
P. A.
Monkewitz
(
Springer
,
Netherlands
,
1996
), pp.
391
394
.
27.
T.
Tsukahara
,
N.
Tillmark
, and
P. H.
Alfredsson
, “
Flow regimes in a plane Couette flow with system rotation
,”
J. Fluid Mech.
648
,
5
33
(
2010
).
28.
H. P.
Greenspan
,
The Theory of Rotating Fluids
,
Cambridge Monographs on Mechanics and Applied Mathematics
(
Cambridge University Press
,
1968
).
29.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer Verlag
,
2001
), Vol.
142
.
30.
B.
Dubrulle
,
O.
Dauchot
,
F.
Daviaud
,
P.-Y.
Longaretti
,
D.
Richard
, and
J.-P.
Zahn
, “
Stability and turbulent transport in Taylor-Couette flow from analysis of experimental data
,”
Phys. Fluids
17
(
9
),
095103
(
2005
).
31.
D. K.
Lezius
and
J. P.
Johnston
, “
Roll-cell instabilities in rotating laminar and turbulent channel flows
,”
J. Fluid Mech.
77
,
153
175
(
1976
).
32.
G. I.
Taylor
, “
Stability of a viscous liquid contained between two rotating cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
223
,
289
343
(
1923
).
33.
G.
Iooss
, “
Secondary bifurcations of Taylor vortices into wavy inflow or outflow boundaries
,”
J. Fluid Mech.
173
,
273
288
(
1986
).
34.
M.
Nagata
, “
On wavy instabilities of the Taylor-vortex flow between corotating cylinders
,”
J. Fluid Mech.
188
,
585
598
(
1988
).
35.
M.
Nagata
, “
Three-dimensional traveling-wave solutions in plane Couette flow
,”
Phys. Rev. E
55
(
2
),
2023
(
1997
).
36.
M.
Nagata
, “
Tertiary solutions and their stability in rotating plane Couette flow
,”
J. Fluid Mech.
358
(
1
),
357
378
(
1998
).
37.
C. A.
Daly
,
T. M.
Schneider
,
P.
Schlatter
, and
N.
Peake
, “
Secondary instability and tertiary states in rotating plane Couette flow
,”
J. Fluid Mech.
761
,
27
61
(
2014
).
38.
H.
Faisst
and
B.
Eckhardt
, “
Transition from the Couette-Taylor system to the plane Couette system
,”
Phys. Rev. E
61
(
6
),
7227
(
2000
).
39.
P.
Manneville
and
Y.
Pomeau
, “
Different ways to turbulence in dissipative dynamical systems
,”
Physica D
1
(
2
),
219
226
(
1980
).
40.
A.
Lundbladh
and
A. V.
Johansson
, “
Direct simulation of turbulent spots in plane Couette flow
,”
J. Fluid Mech.
229
,
499
516
(
1991
).
41.
Y.
Duguet
,
P.
Schlatter
, and
D. S.
Henningson
, “
Formation of turbulent patterns near the onset of transition in plane Couette flow
,”
J. Fluid Mech.
650
,
119
(
2010
).
42.
K.
Avila
,
D.
Moxey
,
A.
de Lozar
,
M.
Avila
,
D.
Barkley
, and
B.
Hof
, “
The onset of turbulence in pipe flow
,”
Science
333
(
6039
),
192
196
(
2011
).
43.
L.
Shi
,
M.
Avila
, and
B.
Hof
, “
Scale invariance at the onset of turbulence in Couette flow
,”
Phys. Rev. Lett.
110
(
20
),
204502
(
2013
).
44.
P. H.
Alfredsson
and
N.
Tillmark
, “
Instability, transition and turbulence in plane Couette flow with system rotation
,” in
IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions
,
Fluid Mechanics and its Applications
Vol.
77
, edited by
T.
Mullin
and
R.
Kerswell
(
Springer
,
Netherlands
,
2005
), pp.
173
193
.
45.
K.
Hiwatashi
,
P. H.
Alfredsson
,
N.
Tillmark
, and
M.
Nagata
, “
Experimental observations of instabilities in rotating plane Couette flow
,”
Phys. Fluids
19
,
048103
(
2007
).
46.
C. D.
Andereck
,
S. S.
Liu
, and
H. L.
Swinney
, “
Flow regimes in a circular Couette system with independently rotating cylinders
,”
J. Fluid Mech.
164
(
3
),
155
183
(
1986
).
47.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
48.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
,
Course of Theoretical Physics
Vol.
6
, 2nd ed.,
translated from Russian by
J. B.
Sykes
and
W. H.
Reid
(Butterworth-Heinemann, Oxford, 1987), pp. 227–229.
49.
J. F.
Gibson
, “Channelflow: A spectral Navier-Stokes simulator in C++,” Technical Report, University New Hampshire, 2012, http://www.Channelflow.org.
50.
T. M.
Schneider
,
J. F.
Gibson
,
M.
Lagha
,
F.
De Lillo
, and
B.
Eckhardt
, “
Laminar-turbulent boundary in plane Couette flow
,”
Phys. Rev. E
78
(
3
),
037301
(
2008
).
51.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanović
, “
Visualizing the geometry of state space in plane Couette flow
,”
J. Fluid Mech.
611
(
1
),
107
130
(
2008
).
52.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanović
, “
Equilibrium and travelling-wave solutions of plane Couette flow
,”
J. Fluid Mech.
638
(
1
),
243
266
(
2009
).
53.
J.
Halcrow
,
J. F.
Gibson
,
P.
Cvitanović
, and
D.
Viswanath
, “
Heteroclinic connections in plane Couette flow
,”
J. Fluid Mech.
621
,
365
376
(
2009
).
54.
T. M.
Schneider
,
J. F.
Gibson
, and
J.
Burke
, “
Snakes and ladders: Localized solutions of plane Couette flow
,”
Phys. Rev. Lett.
104
(
10
),
104501
(
2010
).
55.
T. M.
Schneider
,
D.
Marinc
, and
B.
Eckhardt
, “
Localized edge states nucleate turbulence in extended plane Couette cells
,”
J. Fluid Mech.
646
,
441
(
2010
).
56.
T.
Kreilos
and
B.
Eckhardt
, “
Periodic orbits near onset of chaos in plane Couette flow
,”
Chaos
22
(
4
),
047505
(
2012
).
57.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3, special issue on “Program Generation, Optimization, and Platform Adaptation”
,”
Proc. IEEE
93
(
2
),
16
231
(
2005
).
58.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
1988
).
59.
F.
Rincon
,
G. I.
Ogilvie
, and
C.
Cossu
, “
On self-sustaining processes in Rayleigh-stable rotating plane Couette flows and subcritical transition to turbulence in accretion disks
,”
Astron. Astrophys.
463
(
3
),
817
832
(
2007
).
60.
G.
Brethouwer
,
Y.
Duguet
, and
P.
Schlatter
, “
Turbulent–laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces
,”
J. Fluid Mech.
704
,
137
172
(
2012
).
61.
T. A.
Zang
, “
On the rotation and skew-symmetric forms for incompressible flow simulations
,”
Appl. Numer. Math.
7
(
1
),
27
40
(
1991
).
62.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
537
(
2009
).
63.
O.
Shishkina
,
R. J. A. M.
Stevens
,
S.
Grossmann
, and
D.
Lohse
, “
Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
,”
New J. Phys.
12
(
7
),
075022
(
2010
).
64.
R.
Kristoffersen
,
K. H.
Bech
, and
H. I.
Andersson
, “
Numerical study of turbulent plane Couette flow at low Reynolds number
,”
Advances in Turbulence IV
,
Fluid Mechanics and its Applications
Vol.
18
, edited by
F. T. M.
Nieuwstadt
(
Springer
,
Netherlands
,
1993
), pp.
337
343
.
65.
K. H.
Bech
,
N.
Tillmark
,
P. H.
Alfredsson
, and
H. I.
Andersson
, “
An investigation of turbulent plane Couette flow at low Reynolds numbers
,”
J. Fluid Mech.
286
,
291
326
(
1995
).
66.
K. H.
Bech
and
H. I.
Andersson
, “
Secondary flow in weakly rotating turbulent plane Couette flow
,”
J. Fluid Mech.
317
,
195
214
(
1996
).
67.
K. H.
Bech
and
H. I.
Andersson
, “
Turbulent plane Couette flow subject to strong system rotation
,”
J. Fluid Mech.
347
,
289
314
(
1997
).
68.
M.
Barri
and
H. I.
Andersson
, “
Computer experiments on rapidly rotating plane Couette flow
,”
Commun. Comput. Phys.
7
(
4
),
683
717
(
2010
).
69.
D. V.
Papavassiliou
and
T. J.
Hanratty
, “
Interpretation of large-scale structures observed in a turbulent plane Couette flow
,”
Int. J. Heat Fluid Flow
18
(
1
),
55
69
(
1997
).
70.
B.
Debusschere
and
C. J.
Rutland
, “
Turbulent scalar transport mechanisms in plane channel and Couette flows
,”
Int. J. Heat Mass Transfer
47
(
8
),
1771
1781
(
2004
).
71.
T.
Tsukahara
,
H.
Kawamura
, and
K.
Shingai
, “
DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region
,”
J. Turbul.
7
,
N19
(
2006
).
72.
D.
Viswanath
, “
Recurrent motions within plane Couette turbulence
,”
J. Fluid Mech.
580
,
339
(
2007
).
73.
M.
Nagata
, “
Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity
,”
J. Fluid Mech.
217
,
519
527
(
1990
).
74.
G.
Kawahara
and
S.
Kida
, “
Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst
,”
J. Fluid Mech.
449
,
291
300
(
2001
).
75.
T.
Tsukahara
, “
Structures and turbulent statistics in a rotating plane Couette flow
,”
J. Phys.: Conf. Ser.
318
,
022024
(
2011
).
76.
H.
Reichardt
, “
Gesetzmäßigkeiten der geradlinigen turbulenten Couetteströmung
,” in
Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung
(
Max-Planck-Institut für Strömungsforschung
,
Göttingen
,
1959
), Vol.
22
.
77.
F. H.
Busse
, “
Bounds for turbulent shear flow
,”
J. Fluid Mech.
41
,
219
240
(
1970
).
You do not currently have access to this content.