We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient Cε scales as C ε R e M m / R e n with m ≈ 1 ≈ n (ReM and Re are global/inlet and local Reynolds numbers, respectively) by measuring the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production, and transport in the lee of a square-mesh grid, and compare with a region where Cε ≈ constant. These are the main terms of the inhomogeneous, anisotropic version of the von Kármán-Howarth-Monin equation. It is shown in the grid-generated turbulence studied here that, even in the presence of non-negligible turbulence production and transport, production and transport are large-scale phenomena that do not contribute to the scale-by-scale balance for scales smaller than about a third of the integral-length scale, ℓ, and therefore do not affect the energy transfer to the small-scales. In both the non-equilibrium region where C ε R e M m / R e n and further downstream where Cε ≈ constant, the peak of the scale-by-scale energy transfer scales as ( u 2 ¯ ) 3 / 2 / ( u 2 ¯ is the variance of the longitudinal fluctuating velocity). In the non-equilibrium case, this scaling implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the further downstream region where Cε ≈ constant even though Re is lower.

1.
J. C.
Vassilicos
, “
Dissipation in turbulent flows
,”
Annu. Rev. Fluid Mech.
47
,
95
114
(
2015
).
2.
N.
Mazellier
and
J. C.
Vassilicos
, “
Turbulence without Richardson-Kolmogorov cascade
,”
Phys. Fluids
22
,
075101
(
2010
).
3.
R.
Gomes-Fernandes
,
B.
Ganapathisubramani
, and
J. C.
Vassilicos
, “
Particle image velocimetry study of fractal-generated turbulence
,”
J. Fluid Mech.
711
,
306
336
(
2012
).
4.
S.
Discetti
,
I. B.
Ziskin
,
T.
Astarita
,
R. J.
Adrian
, and
K. P.
Prestridge
, “
PIV measurements of anisotropy and inhomogeneity in decaying fractal generated turbulence
,”
Fluid Dyn. Res.
45
,
061401
(
2013
).
5.
K.
Nagata
,
Y.
Sakai
,
T.
Inaba
,
H.
Suzuki
,
O.
Terashima
, and
H.
Suzuki
, “
Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence
,”
Phys. Fluids
25
,
065102
(
2013
).
6.
R. J.
Hearst
and
P.
Lavoie
, “
Decay of turbulence generated by a square-fractal-element grid
,”
J. Fluid Mech.
741
,
567
584
(
2014
).
7.
J. C.
Isaza
,
R.
Salazar
, and
Z.
Warhaft
, “
On grid-generated turbulence in the near- and far field regions
,”
J. Fluid Mech.
753
,
402
426
(
2014
).
8.
P. C.
Valente
,
R.
Onishi
, and
C.
da Silva
, “
The origin of the imbalance between energy cascade and dissipation in turbulence
,”
Phys. Rev. E
90
,
023003
(
2014
).
9.
S.
Goto
and
J. C.
Vassilicos
, “
Energy dissipation and flux laws for unsteady turbulence
,”
Phys. Lett. A
379
(
16
),
1144
1148
(
2015
).
10.
L.
Danaila
,
J. F.
Krawczynski
,
F.
Thiesset
, and
B.
Renou
, “
Yaglom-like equation in axisymmetric anisotropic turbulence
,”
Physica D
241
,
216
223
(
2012
).
11.
R. J.
Hearst
and
P.
Lavoie
, “
Scale-by-scale energy budget in fractal element grid-generated turbulence
,”
J. Turbul.
15
,
540
554
(
2014
).
12.
P. C.
Valente
and
J. C.
Vassilicos
, “
Universal dissipation scaling for nonequilibrium turbulence
,”
Phys. Rev. Lett.
108
,
214503
(
2012
).
13.
A. N.
Kolmogorov
, “
Dissipation of energy in the locally isotropic turbulence
,”
Dokl. Akad. Nauk. SSSR
32
,
1
(
1941
), [Math. Mech.1, 15–17 (1991)].
14.
T.
Kármán
and
L.
Howarth
, “
On the statistical theory of isotropic turbulence
,”
Proc. R. Soc. A
164
,
192
215
(
1938
).
15.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk. SSSR
30
,
9
13
(
1941
), [Proc. R. Soc. London434, 9–13 (1991)].
16.
Q.
Nie
and
S.
Tanveer
, “
A note on third-order structure functions in turbulence
,”
Proc. R. Soc. A
455
,
1615
1635
(
1999
).
17.
A.
Monin
and
A.
Yaglom
,
Statistical Fluid Mechanics
(
MIT Press
,
1975
), Vol.
2
.
18.
P. G.
de Gennes
,
Introduction to Polymer Dynamics
(
Cambridge University Press
,
1990
).
19.
D.
Biskamp
,
Magnetohydrodynamic Turbulence
(
Cambridge University Press
,
2003
).
20.
U.
Frisch
,
Turbulence: The Legacy of AN Kolmogorov
(
Cambridge University Press
,
Cambridge
,
1995
).
21.
R. A.
Antonia
and
P.
Burattini
, “
Approach to the 4/5 law in homogeneous isotropic turbulence
,”
J. Fluid Mech.
550
,
175
184
(
2006
).
22.
W. K.
George
, “
Reconsidering the ‘Local Equilibrium’ hypothesis for small scale turbulence
,” in
Turbulence Colloquium Marseille 2011: Fundamental Problems of Turbulence, 50 years after the Marseille 1961 Conference
, edited by
H. M. M.
Farge
and
K.
Schneider
(
EDP Sci., Les Ulis, France
,
2014
).
23.
J.
Qian
, “
Slow decay of the finite Reynolds number effect of turbulence
,”
Phys. Rev. E
60
,
3409
(
1999
).
24.
F.
Moisy
,
P.
Tabeling
, and
H.
Wilaime
, “
Kolmogorov equation in a fully developed turbulence experiment
,”
Phys. Rev. Lett.
82
,
3994
(
1999
).
25.
T. S.
Lundgren
, “
Kolmogorov two-thirds law by matched asymptotic expansion
,”
Phys. Fluids
14
,
638
(
2002
).
26.
T. S.
Lundgren
, “
Kolmogorov turbulence by matched asymptotic expansion
,”
Phys. Fluids
15
,
1074
(
2003
).
27.
Y.
Gagne
,
B.
Castaing
,
C.
Baudet
, and
Y.
Malecot
, “
Reynolds dependence of third-order structure functions
,”
Phys. Fluids
16
,
482
(
2004
).
28.
J.
Tchoufag
,
P.
Sagaut
, and
C.
Cambon
, “
Spectral approach to finite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence
,”
Phys. Fluids
24
,
015107
(
2012
).
29.
R.
Schiestel
, “
Multiple-time-scale modeling of turbulent flows in one point closures
,”
Phys. Fluids
30
,
722
(
1987
).
30.
J. L.
Lumley
, “
Some comments on turbulence
,”
Phys. Fluids A
4
,
203
211
(
1992
).
31.
A.
Yoshizawa
, “
Nonequilibrium effect of the turbulent-energy-production process on the inertial-range spectrum
,”
Phys. Rev. E
49
,
4065
(
1994
).
32.
R.
Rubinstein
and
W. J. T.
Bos
, “
On the unsteady behavior of turbulence models
,”
Phys. Fluids
21
,
041701
(
2009
).
33.
R.
Kraichnan
, “
On Kolmogorov’s inertial-range theories
,”
J. Fluid Mech.
62
(
2
),
305
330
(
1974
).
34.
V.
Borue
and
S. A.
Orszag
, “
Local energy flux and subgrid-scale statistics in three-dimensional turbulence
,”
J. Fluid Mech.
366
,
1
31
(
1998
).
35.
W. J. T.
Bos
,
L.
Shao
, and
J.-P.
Bertoglio
, “
Spectral imbalance and the normalized dissipation rate of turbulence
,”
Phys. Fluids
19
,
045101
(
2007
).
36.
M.
Wan
,
Z.
Xiao
,
C.
Meneveau
,
G. L.
Eyink
, and
S.
Chen
, “
Dissipation-energy flux correlations as evidence for the Lagrangian energy cascade in turbulence
,”
Phys. Fluids
22
,
061702
(
2010
).
37.
R. G.
Deissler
, “
Effects of inhomogeneity and of shear flow in weak turbulent fields
,”
Phys. Fluids
4
,
1187
(
1961
).
38.
N.
Marati
,
C. M.
Casciola
, and
R.
Piva
, “
Energy cascade and spatial fluxes in wall turbulence
,”
J. Fluid Mech.
521
,
191
215
(
2004
).
39.
R. G.
Deissler
, “
Spectral energy transfer for inhomogeneous turbulence
,”
Phys. Fluids
24
,
1911
(
1981
).
40.
P. C.
Valente
and
J. C.
Vassilicos
, “
The decay of turbulence generated by a class of multi-scale grids
,”
J. Fluid Mech.
687
,
300
340
(
2011
).
41.
P. C.
Valente
and
J. C.
Vassilicos
, “
The nonequilibrium region of grid-generated turbulence
,”
J. Fluid Mech.
744
,
5
37
(
2014
).
42.
L. H.
Benedict
and
R. D.
Gould
, “
Towards better uncertainty estimates for turbulent statistics
,”
Exp. Fluids
22
,
129
136
(
1996
).
43.
M. G.
Kendall
and
A.
Stuart
,
The Advanced Theory of Statistics
(
Charles Griffin & Co. Limited
,
London
,
1958
), Vol.
1
.
44.
C.
Lamriben
,
P.-P.
Cortet
, and
F.
Moisy
, “
Direct measurements of anisotropic energy transfers in a rotating turbulence experiment
,”
Phys. Rev. Lett.
107
,
024503
(
2011
).
45.
A. K.
Singh
and
B. S.
Bhadauria
, “
Finite difference formulae for unequal sub-intervals using Lagrange’s interpolation formula
,”
Int. J. Math. Anal.
3
,
17
(
2009
).
46.
S.
Laizet
and
J. C.
Vassilicos
, “
DNS of fractal-generated turbulence
,”
Flow, Turbul. Combust.
87
,
673
705
(
2011
).
47.
T.
Sjögren
, “
Development and validation of turbulence models through experiment and computation
,” Ph.D. thesis (
KTH Royal Institute of Technology
,
1997
).
48.
T.
Sjögren
and
A. V.
Johansson
, “
Measurement and modelling of homogeneous axisymmetric turbulence
,”
J. Fluid Mech.
374
,
59
90
(
1998
).
49.
F.
Thiesset
,
R. A.
Antonia
, and
L.
Danaila
, “
Scale-by-scale turbulent energy budget in the intermediate wake of two-dimensional generators
,”
Phys. Fluids
25
,
115105
(
2013
).
50.
W. D.
McComb
,
A.
Berera
,
M.
Salewski
, and
S.
Yoffe
, “
Taylor’s (1935) dissipation surrogate reinterpreted
,”
Phys. Fluids
22
,
061704
(
2010
).
51.
S.
Laizet
,
J. C.
Vassilicos
, and
C.
Cambon
, “
Interscale energy transfer in decaying turbulence and vorticity-strain dynamics in grid-generated turbulence
,”
Fluid Dyn. Res.
45
,
061408
(
2013
).
You do not currently have access to this content.