The present work investigates the local modal and non-modal stability of round jets for varying aspect ratios α = R/θ, where R is the jet radius and θ the shear layer momentum thickness, for Reynolds numbers ranging from 10 to 10 000. The competition between axisymmetric (azimuthal wavenumber m = 0) and helical (m = 1) perturbations depending on the aspect ratio, α, is quantified at different time horizons. Three different techniques have been used, namely, a classical temporal stability analysis in order to characterize the unstable modes of the jet; an optimal excitation analysis, based on the resolution of the adjoint problem, to quantify the potential for non-modal perturbation dynamics; and finally an optimal perturbation analysis, focused on the very short time transient dynamics, to complement the adjoint-based study. Besides providing with the determination of the critical aspect ratio below which the most unstable perturbations switch from m = 0 to m = 1 depending on the Reynolds number, the study shows that perturbations can undergo a rapid transient growth. It is found that helical perturbations always experience the highest transient growth, although for large values of aspect ratio, this transient domination can be overcome by the eventual emergence of axisymmetric perturbation when more exponentially unstable. Furthermore, the adjoint mode, which excites optimally the most unstable mode of the flow, is found to coincide with the optimal perturbation even for short time horizons, and to drive the transient dynamics for finite times. Therefore, the adjoint-based analysis is found to characterize adequately the transient dynamics of jets, showing that a mechanism equivalent to the Orr one takes place for moderate to small wavelengths. However, in the long wavelength limit, a specific mechanism is found to shift the jet as a whole in a way that resembles the classical lift-up effect active in wall shear flows.
Skip Nav Destination
Article navigation
April 2015
Research Article|
April 10 2015
Modal and non-modal evolution of perturbations for parallel round jets
J. I. Jiménez-González
;
J. I. Jiménez-González
a)
1Departamento de Ingeniería Mecánica y Minera,
Universidad de Jaén
, Campus de las Lagunillas, 23071 Jaén, Spain
Search for other works by this author on:
P. Brancher
;
P. Brancher
2INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse),
Université de Toulouse
, Allée Camille Soula, F-31400 Toulouse, France
3
CNRS
, IMFT, F-31400 Toulouse, France
Search for other works by this author on:
C. Martínez-Bazán
C. Martínez-Bazán
1Departamento de Ingeniería Mecánica y Minera,
Universidad de Jaén
, Campus de las Lagunillas, 23071 Jaén, Spain
Search for other works by this author on:
a)
Electronic mail: jignacio@ujaen.es
Physics of Fluids 27, 044105 (2015)
Article history
Received:
October 31 2014
Accepted:
March 17 2015
Citation
J. I. Jiménez-González, P. Brancher, C. Martínez-Bazán; Modal and non-modal evolution of perturbations for parallel round jets. Physics of Fluids 1 April 2015; 27 (4): 044105. https://doi.org/10.1063/1.4916892
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Transient energy growth of optimal streaks in parallel round jets
Physics of Fluids (November 2017)
Round and round we go: Speech intelligibility and localization for in-the-round spaces
J Acoust Soc Am (March 2023)
Square attack on 4 round Midori64
AIP Conference Proceedings (November 2019)
Hearing and the round goby: Understanding the auditory system of the round goby (Neogobius melanostomus)
J Acoust Soc Am (April 2005)
Rounding and palatalization convergence in Twi.
J Acoust Soc Am (April 1996)