The present work investigates the local modal and non-modal stability of round jets for varying aspect ratios α = R/θ, where R is the jet radius and θ the shear layer momentum thickness, for Reynolds numbers ranging from 10 to 10 000. The competition between axisymmetric (azimuthal wavenumber m = 0) and helical (m = 1) perturbations depending on the aspect ratio, α, is quantified at different time horizons. Three different techniques have been used, namely, a classical temporal stability analysis in order to characterize the unstable modes of the jet; an optimal excitation analysis, based on the resolution of the adjoint problem, to quantify the potential for non-modal perturbation dynamics; and finally an optimal perturbation analysis, focused on the very short time transient dynamics, to complement the adjoint-based study. Besides providing with the determination of the critical aspect ratio below which the most unstable perturbations switch from m = 0 to m = 1 depending on the Reynolds number, the study shows that perturbations can undergo a rapid transient growth. It is found that helical perturbations always experience the highest transient growth, although for large values of aspect ratio, this transient domination can be overcome by the eventual emergence of axisymmetric perturbation when more exponentially unstable. Furthermore, the adjoint mode, which excites optimally the most unstable mode of the flow, is found to coincide with the optimal perturbation even for short time horizons, and to drive the transient dynamics for finite times. Therefore, the adjoint-based analysis is found to characterize adequately the transient dynamics of jets, showing that a mechanism equivalent to the Orr one takes place for moderate to small wavelengths. However, in the long wavelength limit, a specific mechanism is found to shift the jet as a whole in a way that resembles the classical lift-up effect active in wall shear flows.

1.
G. K.
Batchelor
and
E.
Gill
, “
Analysis of the stability of axisymmetric jets
,”
J. Fluid Mech.
14
,
529
551
(
1962
).
2.
A.
Michalke
, “
On the inviscid instability of the hyperbolic-tangent velocity profile
,”
J. Fluid Mech.
19
(
4
),
543
556
(
1964
).
3.
D. G.
Crighton
and
M.
Gaster
, “
Stability of slowly diverging jet flow
,”
J. Fluid Mech.
77
(
2
),
397
413
(
1976
).
4.
P. J.
Morris
, “
The spatial viscous instability of axisymmetric jets
,”
J. Fluid Mech.
77
,
511
529
(
1976
).
5.
A.
Michalke
and
G.
Hermann
, “
On the inviscid instability of a circular jet with external flow
,”
J. Fluid Mech.
114
,
343
359
(
1982
).
6.
A.
Michalke
, “
Survey on jet instability theory
,”
Prog. Aerosp. Sci.
21
,
159
199
(
1984
).
7.
M.
Abid
,
M.
Brachet
, and
P.
Huerre
, “
Linear hydrodinamic instability of circular jets with thin shear layers
,”
Eur. J. Mech., B: Fluids
12
(
5
),
683
693
(
1993
).
8.
P.
Plaschko
, “
Helical instabilities of slowly divergent jets
,”
J. Fluid Mech.
92
(
2
),
209
215
(
1979
).
9.
M. P.
Lessen
and
P. J.
Singh
, “
The stability of axisymmetric free shear layers
,”
J. Fluid Mech.
60
,
433
457
(
1973
).
10.
P.
Brancher
, “
Étude numérique des instabilités secondaire de jets
,” Ph.D. thesis (
Ecole Polytechnique Palaiseau
, France,
1996
).
11.
W.
Coenen
,
A.
Sevilla
, and
A. L.
Sánchez
, “
Absolute instability of light jets emerging from circular injector tubes
,”
Phys. Fluids
20
,
074104
(
2008
).
12.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer-Verlag
,
2001
).
13.
A.
Antkowiak
and
P.
Brancher
, “
On vortex rings around vortices: An optimal mechanism
,”
J. Fluid Mech.
578
(
1
),
295
304
(
2007
).
14.
P. J.
Schmidt
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
,
129
162
(
2007
).
15.
W. M. F.
Orr
, “
The stability or instability of the steady motions of a perfect liquid and of viscous liquid. Part I: A perfect liquid. Part II: A viscous liquid
,”
P. Roy. Irish Acad. A
27
(
A
),
9
138
(
1907
).
16.
T.
Ellingsen
and
E.
Palm
, “
Stability of linear flow
,”
Phys. Fluids
18
(
4
),
487
488
(
1975
).
17.
M. T.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
(
2
),
243
251
(
1980
).
18.
X.
Garnaud
,
L.
Lesshafft
,
P. J.
Schmidt
, and
P.
Huerre
, “
Modal and transient dynamics of jet flows
,”
Phys. Fluids
25
,
044103
(
2013
).
19.
S. A.
Boronin
,
J. J.
Healey
, and
S. S.
Sazhin
, “
Non-modal stability of round viscous jets
,”
J. Fluid Mech.
716
,
96
119
(
2013
).
20.
X.
Garnaud
,
L.
Lesshafft
,
P. J.
Schmidt
, and
P.
Huerre
, “
The preferred mode of incompressible jets: Linear frequency response analysis
,”
J. Fluid Mech.
716
,
189
202
(
2013
).
21.
A.
Michalke
, “
Instabilität eines Kompressiblen Runden Freistrahls unter Berücksichtigung des Einflusses der Strahlgrenzschichtdicke
,”
Z. Flugwiss.
9
,
319
(
1971
).
22.
D. C.
Hill
, “
Adjoint systems and their role in the receptivity problem for boundary layers
,”
J. Fluid Mech.
292
,
183
204
(
1995
).
23.
B. F.
Farrell
, “
Optimal excitation of perturbation in viscous shear flow
,”
Phys. Fluids
38
(
8
),
2093
2102
(
1988
).
24.
S.
Ortiz
and
J. M.
Chomaz
, “
Transient growth of secondary instabilities in parallel wakes: Anti lift-up mechanism and hyperbolic instability
,”
Phys. Fluids
23
,
114106
(
2011
).
25.
P.
Corbett
and
A.
Bottaro
, “
Optimal linear growth in swept boundary layers
,”
J. Fluid Mech.
435
,
1
23
(
2001
).
26.
A.
Antkowiak
and
P.
Brancher
, “
Transient energy growth for the lamb-oseen vortex
,”
Phys. Fluids
16
(
1
),
L1
L4
(
2004
).
27.
A.
Antkowiak
, “
Dynamique aux temps courts d’un tourbillon isolé
,” Ph.D. thesis (
Université Paul Sabatier de Toulouse
, France,
2005
).
28.
B.
Fornberg
,
A Practical Guide to Pseudospectral Methods
(
Cambridge University Press
,
1995
).
29.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T.
Zhang
,
Spectral Methods in Fluid Dynamics
(
Springer
,
1988
).
30.
J. A. C.
Weideman
and
S. C.
Reddy
, “
A MATLAB differentiation matrix suite
,”
ACM Trans. Math. Software
26
(
4
),
465
519
(
2000
).
31.
R. R.
Kerswell
and
A.
Davey
, “
On the linear instabillity of elliptic pipe flow
,”
J. Fluid Mech.
316
,
307
324
(
1996
).
32.
J.-M.
Chomaz
, “
Global instabilities in spatially developing flows: Non-normality and nonlinearity
,”
Annu. Rev. Fluid Mech.
37
,
357
392
(
2005
).
You do not currently have access to this content.