The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

1.
S.
Candel
,
D.
Durox
,
S.
Ducruix
,
A.-L.
Birbaud
,
N.
Noiray
, and
T.
Schuller
, “
Flame dynamics and combustion noise: Progress and challenges
,”
Int. J. Aeroacoust.
8
(
1
),
1
56
(
2009
).
2.
Combustion Instabilities in Gas Turbines, Operational Experience, Fundamental Mechanisms, and Modeling
, edited by
T. C.
Lieuwen
and
V.
Yang
,
Progress in Astronautics and Aeronautics
Vol.
210
(
American Institute of Aeronautics and Astronautics, Inc.
,
2005
).
3.
T. C.
Lieuwen
,
Unsteady Combustor Physics
(
Cambridge University Press
,
2012
).
4.
C. O.
Paschereit
,
B.
Schuermans
,
W.
Polifke
, and
O.
Mattson
, “
Measurement of transfer matrices and source terms of premixed flames
,”
J. Eng. Gas Turbines Power
124
,
239
247
(
2002
).
5.
B.
Schuermans
,
F.
Guethe
,
D.
Pennel
,
D.
Guyot
, and
C. O.
Paschereit
, “
Thermoacoustic modeling of a gas turbine using transfer functions measured at full engine pressure
,”
J. Eng. Gas Turbines Power
132
(
11
),
11503
(
2010
).
6.
D.
Durox
,
T.
Schuller
,
N.
Noiray
, and
S.
Candel
, “
Experimental analysis of nonlinear flame transfer functions for different flame geometries
,”
Proc. Combust. Inst.
32
(
1
),
1391
1398
(
2009
).
7.
K. T.
Kim
and
S.
Hochgreb
, “
The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations
,”
Combust. Flame
158
,
2482
2499
(
2011
).
8.
K. T.
Kim
,
J. G.
Lee
,
B. D.
Quay
, and
D. A.
Santavicca
, “
Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations
,”
Combust. Flame
157
,
1731
1744
(
2010
).
9.
B.
Schuermans
,
F.
Guethe
, and
W.
Mohr
, “
Optical transfer function measurements for technically premixed flames
,”
J. Eng. Gas Turbines Power
132
,
081501
(
2010
).
10.
P.
Palies
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
Experimental study on the effect of swirler geometry and swirl number on flame describing functions
,”
Combust. Sci. Technol.
183
(
7
),
704
717
(
2011
).
11.
S.
Schimek
,
J. P.
Moeck
, and
C. O.
Paschereit
, “
An experimental investigation of the nonlinear response of an atmospheric swirl-stabilized premixed flame
,”
J. Eng. Gas Turbines Power
133
(
10
),
101502
(
2011
).
12.
B. C.
Bobusch
,
B.
Cosic
,
J. P.
Moeck
, and
C. O.
Paschereit
, “
Optical measurement of local and global transfer functions for equivalence ratio fluctuations in a turbulent swirl flame
,”
J. Eng. Gas Turbines Power
136
,
021506
(
2014
).
13.
S.
Bade
,
M.
Wagner
,
C.
Hirsch
,
T.
Sattelmayer
, and
B.
Schuermans
, “
Design for thermo-acoustic stability: Procedure and database
,”
J. Eng. Gas Turbines Power
135
,
121507
(
2013
).
14.
S.
Bade
,
M.
Wagner
,
C.
Hirsch
,
T.
Sattelmayer
, and
B.
Schuermans
, “
Design for thermo-acoustic stability: Modeling of burner and flame dynamics
,”
J. Eng. Gas Turbines Power
135
,
111502
(
2013
).
15.
N.
Noiray
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
A unified framework for nonlinear combustion instability analysis based on the flame describing function
,”
J. Fluid Mech.
615
,
139
167
(
2008
).
16.
P.
Palies
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
Nonlinear combustion instabilities analysis based on the flame describing function applied to turbulent premixed swirling flames
,”
Combust. Flame
158
,
1980
1991
(
2011
).
17.
W.
Krebs
,
H.
Krediet
,
E.
Portillo
,
S.
Hermeth
,
T.
Poinsot
,
S.
Schimek
, and
O.
Paschereit
, “
Comparison of nonlinear to linear thermoacoustic stability analysis of a gas turbine combustion system
,”
J. Eng. Gas Turbines Power
135
,
081503
(
2013
).
18.
H.
Krediet
,
C. H.
Beck
,
W.
Krebs
,
S.
Schimek
,
C. O.
Paschereit
, and
J. B. W.
Kok
, “
Identification of the flame describing function of a premixed swirl flame from LES
,”
Combust. Sci. Technol.
184
,
888
900
(
2012
).
19.
L.
Tay-Wo-Chong
and
W.
Polifke
, “
Large eddy simulation-based study of the influence of thermal boundary condition and combustor confinement on premix flame transfer functions
,”
J. Eng. Gas Turbines Power
135
,
021502
(
2013
).
20.
S.
Hermeth
,
G.
Staffelbach
,
L. Y. M.
Gicquel
,
V.
Anisimov
,
C.
Cirigliano
, and
T.
Poinsot
, “
Bistable swirled flames and influence on flame transfer functions
,”
Combust. Flame
161
(
1
),
184
196
(
2014
).
21.
G.
Staffelbach
,
L. Y. M.
Gicquel
,
G.
Boudier
, and
T.
Poinsot
, “
Large eddy simulation of self excited azimuthal modes in annular combustors
,”
Proc. Combust. Inst.
32
,
2909
2916
(
2009
).
22.
P.
Iudiciani
and
C.
Duwig
, “
Large eddy simulation of the sensitivity of vortex breakdown and flame stabilisation to axial forcing
,”
Flow, Turbul. Combust.
86
,
639
666
(
2011
).
23.
B.
Franzelli
,
E.
Riber
,
L. Y. M.
Gicquel
, and
T.
Poinsot
, “
Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame
,”
Combust. Flame
159
(
2
),
621
637
(
2012
).
24.
L.
Tay-Wo-Chong
,
T.
Komarek
,
R.
Kaess
,
S.
Foller
, and
W.
Polifke
, “
Identification of flame transfer functions from LES of a premixed swirl burner
,” in
Proceedings of ASME Turbo Expo 2010
(
ASME
,
2010
), pp.
623
635
.
25.
L.
Tay-Wo-Chong
,
S.
Bomberg
,
A.
Ulhaq
, and
W.
Polifke
, “
Comparative validation study on identification of premixed flame transfer function
,”
J. Eng. Gas Turbines Power
134
(
2
),
021502
(
2012
).
26.
M.
Fleifil
,
A. M.
Annaswamy
,
Z. A.
Ghoneim
, and
A. F.
Ghoniem
, “
Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results
,”
Combust. Flame
106
,
487
510
(
1996
).
27.
A. P.
Dowling
, “
A kinematic model of a ducted flame
,”
J. Fluid Mech.
394
,
51
72
(
1999
).
28.
T.
Schuller
,
D.
Durox
, and
S.
Candel
, “
A unified model for the prediction of laminar flame transfer functions: Comparisons between conical and V-flame dynamics
,”
Combust. Flame
134
(
1-2
),
21
34
(
2003
).
29.
J. H.
Cho
and
T.
Lieuwen
, “
Laminar premixed flame response to equivalence ratio oscillations
,”
Combust. Flame
140
,
116
129
(
2005
).
30.
Preetham
,
S.
Hemchandra
, and
T.
Lieuwen
, “
Dynamics of laminar premixed flames forced by harmonic velocity disturbances
,”
J. Propul. Power
24
(
6
),
1390
1402
(
2008
).
31.
H. M.
Altay
,
S.
Park
,
D.
Wu
,
D.
Wee
,
A. M.
Annaswamy
, and
A. F.
Ghoniem
, “
Modeling the dynamic response of a laminar perforated-plate stabilized flame
,”
Proc. Combust. Inst.
32
,
1359
1366
(
2009
).
32.
P.
Palies
,
T.
Schuller
,
D.
Durox
, and
S.
Candel
, “
Modeling of swirling flames transfer functions
,”
Proc. Combust. Inst.
33
,
2967
2974
(
2011
).
33.
K. I.
Matveev
and
F. E. C.
Culick
, “
A model for combustion instability involving vortex shedding
,”
Combust. Sci. Technol.
175
,
1059
1083
(
2003
).
34.
A. L.
Birbaud
,
D.
Durox
, and
S.
Candel
, “
Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations
,”
Combust. Flame
146
(
3
),
541
552
(
2006
).
35.
A. L.
Birbaud
,
D.
Durox
,
S.
Ducruix
, and
S.
Candel
, “
Dynamics of free jets submitted to upstream acoustic modulations
,”
Phys. Fluids
19
(
1
),
013602
(
2007
).
36.
P.
Palies
,
T.
Schuller
,
D.
Durox
,
L. Y. M.
Gicquel
, and
S.
Candel
, “
Acoustically perturbed turbulent premixed swirling flames
,”
Phys. Fluids
23
,
037101
(
2011
).
37.
V.
Acharya
,
D.-H.
Shin
, and
T.
Lieuwen
, “
Swirl effects on harmonically excited, premixed flame kinematics
,”
Combust. Flame
159
(
3
),
1139
1150
(
2012
).
38.
C. W.
Rhee
,
L.
Talbot
, and
J. A.
Sethian
, “
Dynamical behaviour of a premixed turbulent open V-flame
,”
J. Fluid Mech.
300
,
87
115
(
1995
).
39.
D.
Hartmann
,
M.
Meinke
, and
W.
Schröder
, “
A level-set based adaptive-grid method for premixed combustion
,”
Combust. Flame
158
,
1318
1339
(
2011
).
40.
S.
Hemchandra
, “
Premixed flame response to equivalence ratio fluctuations: Comparison between reduced order modeling and detailed computations
,”
Combust. Flame
159
,
3530
3543
(
2012
).
41.
K.
Kashinath
,
S.
Hemchandra
, and
M.
Juniper
, “
Nonlinear thermoacoustics of ducted premixed flames: The influence of perturbation convection speed
,”
Combust. Flame
160
,
2856
2865
(
2013
).
42.
V. N.
Kornilov
,
R.
Rook
,
J. H. M.
ten Thije Bookkamp
, and
L. P. H.
de Goey
, “
Experimental and numerical investigation of the acoustic response of multi-slit bunsen burners
,”
Combust. Flame
156
(
10
),
1957
1970
(
2009
).
43.
P.
Auzillon
,
B.
Fiorina
,
R.
Vicquelin
,
N.
Darabiha
,
O.
Gicquel
, and
D.
Veynante
, “
Modeling chemical flame structure and combustion dynamics in LES
,”
Proc. Combust. Inst.
33
(
1
),
1331
1338
(
2011
).
44.
F.
Duchaine
,
F.
Boudy
,
D.
Durox
, and
T.
Poinsot
, “
Sensitivity of flame transfer functions of laminar flames
,”
Combust. Flame
158
,
2384
2394
(
2011
).
45.
K. S.
Kedia
,
H. M.
Altay
, and
A. F.
Ghoniem
, “
Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics
,”
Proc. Combust. Inst.
33
,
1113
1120
(
2011
).
46.
X.
Garnaud
, “
Modes, transient dynamics and forced response of circular jets
,” Ph.D. thesis (
Ecole Polytechnique X
,
2012
).
47.
M.
Lemke
,
J.
Reiss
, and
J.
Sesterhenn
, “
Adjoint based optimisation of reactive compressible flows
,”
Combust. Flame
161
(
10
),
2552
2564
(
2014
).
48.
U. A.
Qadri
, “
Global stability and control of swirling jets and flames
,” PhD thesis (
University of Cambridge
,
2014
).
49.
T. Ph.
Bui
,
W.
Schröder
, and
M.
Meinke
, “
Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations
,”
Comput. Fluids
37
(
9
),
1157
1169
(
2008
).
50.
A. R.
Kerstein
,
W. T.
Ashurst
, and
F. A.
Williams
, “
Field equation for interface propagation in an unsteady homogeneous flow field
,”
Phys. Rev. A
37
(
7
),
2728
2731
(
1988
).
51.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
2000
).
52.
S.
Ducruix
,
T.
Schuller
,
D.
Durox
, and
S.
Candel
, “
Combustion dynamics and instabilities: Elementary coupling and driving mechanisms
,”
J. Propul. Power
19
(
5
),
722
734
(
2003
).
53.
L.
Boyer
and
J.
Quinard
, “
On the dynamics of anchored flames
,”
Combust. Flame
82
(
1
),
51
65
(
1990
).
54.
I. B.
Zeldovich
,
G. I.
Barenblatt
,
V. B.
Librovich
, and
G. M.
Makhviladze
,
Mathematical Theory of Combustion and Explosions
(
Consultants Bureau
,
New York, NY
,
1985
).
55.
V. V.
Bychkov
and
M. A.
Liberman
, “
Dynamics and stability of premixed flames
,”
Phys. Rep.
325
(
4-5
),
115
237
(
2000
).
56.
P.
Pelce
and
P.
Clavin
, “
Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames
,”
J. Fluid Mech.
124
,
219
237
(
1982
).
57.
G. I.
Sivashinsky
, “
Nonlinear analysis of hydrodynamic instability in laminar flames I. Derivation of basic equations
,”
Acta Astronaut.
4
(
11-12
),
1177
1206
(
1977
).
58.
K.-L.
Pan
and
R.
Fursenko
, “
Characteristics of cylindrical flame acceleration in outward expansion
,”
Phys. Fluids
20
(
9
),
094107
(
2008
).
59.
V. N.
Kornilov
,
K. R. A. M.
Schreel
, and
L. P. H.
de Goey
, “
Experimental assessment of the acoustic response of laminar premixed bunsen flames
,”
Proc. Combust. Inst.
31
,
1239
1246
(
2007
).
60.
F.
Baillot
,
D.
Durox
, and
R.
Prud’Homme
, “
Experimental and theoretical study of a premixed vibrating flame
,”
Combust. Flame
88
,
149
168
(
1992
).
61.
A. L.
Birbaud
,
S.
Ducruix
,
D.
Durox
, and
S.
Candel
, “
The nonlinear response of inverted V-flames to equivalence ratio nonuniformities
,”
Combust. Flame
154
(
3
),
356
367
(
2008
).
62.
T.
Schuller
,
D.
Durox
, and
S.
Candel
, “
Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners
,”
Combust. Flame
135
(
4
),
525
537
(
2003
).
63.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
, 3rd ed. (
R.T. Edwards, Inc.
,
2012
).
64.
R. D.
Sandberg
, “
Governing equations for a new compressible Navier-Stokes solver in general cylindrical coordinates
,”
Monograph No. AFM-07/07
,
School of Engineering Sciences, University of Southampton
,
2007
.
65.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial difference equations of mathematical physics
,”
IBM J. Res. Dev.
11
(
2
),
215
234
(
1967
).
66.
J.
Berland
,
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems
,”
J. Comput. Phys.
224
(
2
),
637
662
(
2007
).
67.
S.
Gottlieb
, “
On high order strong stability preserving Runge–Kutta and multi step time discretizations
,”
J. Sci. Comput.
25
(
1
),
105
128
(
2005
).
68.
D. I.
Ketcheson
, “
Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations
,”
SIAM J. Sci. Comput.
30
(
4
),
2113
2136
(
2008
).
69.
S.
Balay
,
J.
Brown
,
K.
Buschelman
,
V.
Eijkhout
,
W. D.
Gropp
,
D.
Kaushik
,
M. G.
Knepley
,
L. C.
McInnes
,
B. F.
Smith
, and
H.
Zhang
, “PETSc users manual,” Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2013.
70.
S.
Balay
,
W. D.
Gropp
,
L. C.
McInnes
, and
B. F.
Smith
, “
Efficient management of parallelism in object oriented numerical software libraries
,” in
Modern Software Tools in Scientific Computing
, edited by
E.
Arge
,
A. M.
Bruaset
, and
H. P.
Langtangen
(
Birkhäuser Press
,
1997
), pp.
163
202
.
71.
P.
Huerre
and
P. A.
Monkewitz
, “
Absolute and convective instabilities in free shear layers
,”
J. Fluid Mech.
159
,
151
168
(
1985
).
72.
A.
Michalke
, “
Survey on jet instability theory
,”
Prog. Aerosp. Sci.
21
,
159
199
(
1984
).
73.
P. A.
Monkewitz
and
K.
Sohn
, “
Absolute instability in hot jets
,”
AIAA J.
26
(
8
),
911
916
(
1988
).
74.
L.
Lesshafft
,
P.
Huerre
,
P.
Sagaut
, and
M.
Terracol
, “
Nonlinear global modes in hot jets
,”
J. Fluid Mech.
554
,
393
409
(
2006
).
75.
E.
Akervik
,
L.
Brandt
,
D. S.
Henningson
,
J.
Hoepffner
,
O.
Marxen
, and
P.
Schlatter
, “
Steady solutions of the Navier-Stokes equations by selective frequency damping
,”
Phys. Fluids
18
(
6
),
068102
068106
(
2006
).
76.
M. F.
de Pando
,
D.
Sipp
, and
P. J.
Schmid
, “
Efficient evaluation of the direct and adjoint linearized dynamics from compressible flow solvers
,”
J. Comput. Phys.
231
(
23
),
7739
7755
(
2012
).
77.
P.
Clavin
and
E. D.
Siggia
, “
Turbulent premixed flames and sound generation
,”
Combust. Sci. Technol.
78
(
1-3
),
147
155
(
1991
).
78.
M.
Talei
,
M. J.
Brear
, and
E. R.
Hawkes
, “
A parametric study of sound generation by premixed laminar flame annihilation
,”
Combust. Flame
159
(
2
),
757
769
(
2012
).
79.
G. H.
Markstein
,
Nonsteady Flame Propagation
(
Pergamon
,
1964
).
80.
J.-M.
Truffaut
, “
Étude expérimentale de l’origine du bruit émis par les flammes de chalumeaux
,” Ph.D. thesis (
Université de Provence–Aix-Marseille I
,
1998
).
81.
R.
Krasny
, “
Desingularization of periodic vortex sheet roll-up
,”
J. Comput. Phys.
65
(
2
),
292
313
(
1986
).
82.
Y.
Saad
and
M.
Schultz
, “
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
,”
SIAM J. Sci. Stat. Comput.
7
(
3
),
856
869
(
1986
).
You do not currently have access to this content.