The distributions of “time of flight” (time spent by a single fluid particle between two crossings of the Poincaré section) are investigated for five different three dimensional stationary chaotic mixers. Above all, we study the large tails of those distributions and show that mainly two types of behaviors are encountered. In the case of slipping walls, as expected, we obtain an exponential decay, which, however, does not scale with the Lyapunov exponent. Using a simple model, we suggest that this decay is related to the negative eigenvalues of the fixed points of the flow. When no-slip walls are considered, as predicted by the model, the behavior is radically different, with a very large tail following a power law with an exponent close to −3.

1.
H.
Aref
, “
Stirring by chaotic advection
,”
J. Fluid Mech.
143
,
1
21
(
1984
).
2.
J. M.
Ottino
,
The Kinematics of Mixing: Stretching, Chaos and Transport
(
Cambridge University Press
,
New-York
,
1989
).
3.
M.
Chertkov
and
V.
Lebedev
, “
Decay of scalar turbulence revisited
,”
Phys. Rev. Lett.
90
(
3
),
034501
(
2003
).
4.
H.
Salman
and
P. H.
Haynes
, “
A numerical study of passive scalar evolution in peripheral regions
,”
Phys. Fluids
19
(
6
),
067101
(
2007
).
5.
E.
Gouillart
,
N.
Kuncio
,
O.
Dauchot
,
B.
Dubrulle
,
S.
Roux
, and
J.-L.
Thiffeault
, “
Walls inhibit chaotic mixing
,”
Phys. Rev. Lett.
99
(
11
),
114501
(
2007
).
6.
E.
Gouillart
,
O.
Dauchot
,
B.
Dubrulle
,
S.
Roux
, and
J.-L.
Thiffeault
, “
Slow decay of concentration variance due to no-slip walls in chaotic mixing
,”
Phys. Rev. E
78
,
026211
(
2008
).
7.
R.
Pierrehumbert
, “
On tracer microstructure in the large-eddy dominated regime
,”
Chaos, Solitons Fractals
4
,
1091
1110
(
1994
).
8.
V.
Toussaint
,
Ph.
Carrière
, and
F.
Raynal
, “
A numerical Eulerian approach to mixing by chaotic advection
,”
Phys. Fluids
7
,
2587
2600
(
1995
).
9.
T. M.
Antonsen
,
Z.
Fan
,
E.
Ott
, and
E.
Garcia-Lopez
, “
The role of chaotic orbits in the determination of power spectra of passive scalars
,”
Phys. Fluids
8
(
11
),
3094
3104
(
1996
).
10.
M.
Giona
,
A.
Adrover
,
S.
Cerbelli
, and
V.
Vitacolonna
, “
Spectral properties and transport mechanisms of partially chaotic bounded flows in the presence of diffusion
,”
Phys. Rev. Lett.
92
(
11
),
114101
(
2004
).
11.
M.
Giona
,
S.
Cerbelli
, and
V.
Vitacolonna
, “
Universality and imaginary potentials in advection–diffusion equations in closed flows
,”
J. Fluid Mech.
513
,
221
237
(
2004
).
12.
R. T.
Pierrehumbert
, “
Lattice modes of advection–diffusion
,”
Chaos
10
(
1
),
61
73
(
2000
).
13.
K.
Ngan
and
J.
Vanneste
, “
Scalar decay in a three-dimensional chaotic flow
,”
Phys. Rev. E
83
,
056306
(
2011
).
14.
P.
Carrière
, “
On a three-dimensional implementation of the Baker’s map
,”
Phys. Fluids
19
,
118110
(
2007
).
15.
S. W.
Jones
and
W. R.
Young
, “
Shear dispersion and anomalous diffusion by chaotic advection
,”
J. Fluid Mech.
280
,
149
172
(
1994
).
16.
V.
Rom-Kedar
,
A.
Leonard
, and
S.
Wiggins
, “
An analytical study of the transport, mixing and chaos in an unsteady vortical flow
,”
J. Fluid Mech.
214
,
347
394
(
1990
).
17.
F.
Raynal
and
J. N.
Gence
, “
Efficient stirring in planar, time-periodic laminar flows
,”
Chem. Eng. Sci.
50
(
4
),
631
640
(
1995
).
18.
F.
Raynal
and
S.
Wiggins
, “
Lobe dynamics in a kinematic model of a meandering jet. I. Geometry and statistics of transport and lobe dynamics with accelerated convergence
,”
Phys. D
223
(
1
),
7
25
(
2006
).
19.
R.
Sturman
,
J. M.
Ottino
, and
S.
Wiggins
,
The Mathematical Foundations of Mixing: The Linked Twist Map as a Paradigm in Applications: Micro to Macro, Fluids to Solids
(
Cambridge University Press
,
2006
), Vol.
22
.
20.
R.
Sturman
,
S. W.
Meier
,
J. M.
Ottino
, and
S.
Wiggins
, “
Linked twist map formalism in two and three dimensions applied to mixing in tumbled granular flows
,”
J. Fluid Mech.
602
,
129
174
(
2008
).
21.
R.
Sturman
and
J.
Springham
, “
Rate of chaotic mixing and boundary behavior
,”
Phys. Rev. E
87
(
1
),
012906
(
2013
).
22.
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifoldsconnecting probabilistic and geometric descriptions of coherent structures in flows
,”
Phys. D
238
(
16
),
1507
1523
(
2009
).
23.
M. A.
Stremler
,
S. D.
Ross
,
P.
Grover
, and
P.
Kumar
, “
Topological chaos and periodic braiding of almost-cyclic sets
,”
Phys. Rev. Lett.
106
(
11
),
114101
(
2011
).
24.
P. V.
Danckwerts
, “
Continuous flows systems–distribution of residence times
,”
Chem. Eng. Sci.
2
(
1
),
1
13
(
1953
).
25.
P. V.
Danckwerts
, “
Local residence-times in continuous-flow systems
,”
Chem. Eng. Sci.
9
(
1
),
78
79
(
1958
).
26.
J. P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos
,”
Rev. Mod. Phys.
57
(
3
),
617
656
(
1985
).
27.
R.
Artuso
,
L.
Cavallasca
, and
G.
Cristadoro
, “
Dynamical and transport properties in a family of intermittent area-preserving maps
,”
Phys. Rev. E
77
(
4
),
046206
(
2008
).
28.
D. V.
Khakhar
,
J. G.
Franjione
, and
J. M.
Ottino
, “
A case study of chaotic mixing in deterministic flows: The partitioned-pipe mixer
,”
Chem. Eng. Sci.
42
(
12
),
2909
2926
(
1987
).
29.
I.
Mezić
,
S.
Wiggins
, and
D.
Betz
, “
Residence-time distributions for chaotic flows in pipes
,”
Chaos: Interdiscip. J. Nonlinear Sci.
9
(
1
),
173
182
(
1999
).
30.
D. B.
Spalding
, “
A note on mean residence-times in steady flows of arbitrary complexity
,”
Chem. Eng. Sci.
9
(
1
),
74
77
(
1958
).
31.
C. D.
Armeniades
,
W. C.
Johnson
, and
T.
Raphael
, Mixing device. Technical Report 3286992, U.S. patent (22 November 1966).
32.
P.
Carrière
, “
Lyapunov spectrum determination from the FEM simulation of a chaotic advecting flow
,”
Int. J. Numer. Methods Fluids
50
(
5
),
555
577
(
2006
).
33.
V.
Toussaint
and
P.
Carrière
, “
Diffusive cut-off of fractal surfaces in chaotic mixing
,”
Int. J. Bifurcation Chaos
9
(
3
),
443
454
(
1999
).
34.
V.
Toussaint
,
P.
Carrière
,
J.
Scott
, and
J. N.
Gence
, “
Spectral decay of a passive scalar in chaotic mixing
,”
Phys. Fluids
12
(
11
),
2834
2844
(
2000
).
35.
K.
Bajer
and
H. K.
Moffatt
, “
On a class of steady Stokes flows with chaotic streamlines
,”
J. Fluid Mech.
212
,
337
363
(
1990
).
36.
C. W.
Leong
and
J. M.
Ottino
, “
Experiments on mixing due to chaotic advection in a cavity
,”
J. Fluid Mech.
209
,
463
499
(
1989
).
37.
D. M.
Hobbs
and
F. J.
Muzzio
, “
The Kenics static mixer: a three-dimensional chaotic flow
,”
Chem. Eng. J.
67
,
153
166
(
1997
).
38.
D. M.
Hobbs
,
P. D.
Swanson
, and
F. J.
Muzzio
, “
Numerical characterization of low Reynolds number flow in the Kenics static mixer
,”
Chem. Eng. Sci.
53
(
8
),
1565
1584
(
1998
).
39.
O.
Byrde
, “
Massively parallel flow computation with application to fluid mixing
,” Ph.D. thesis (
EPF-Lausanne
,
1997
).
40.
O.
Byrde
and
M. L.
Sawley
, “
Optimization of a Kenics static mixer for non-creeping flow conditions
,”
Chem. Eng. J.
72
,
163
169
(
1999
).
41.
O.
Byrde
and
M. L.
Sawley
, “
Parallel computation and analysis of the flow in a static mixer
,”
Comput. Fluids
28
,
1
18
(
1999
).
42.
V.
Kumar
,
V.
Shirke
, and
K. D. P.
Nigam
, “
Performance of kenics static mixer over a wide range of Reynolds number
,”
Chem. Eng. J.
139
,
284
295
(
2008
).
43.
B. L.
Gray
,
D.
Jaeggi
,
N. J.
Mourlas
,
B. P.
van Drieënhuizen
,
K. R.
Williams
,
N. I.
Maluf
, and
G. T. A.
Kovacs
, “
Novel interconnection technologies for integrated microfluidic systems
,”
Sens. Actuators
77
,
57
65
(
1999
).
44.
H.
Chen
and
J.-C.
Meiners
, “
Topologic mixing on a microfluidic chip
,”
Appl. Phys. Lett.
84
(
12
),
2193
2195
(
2004
).
45.
D. R.
Lester
,
A.
Ord
, and
B. E.
Hobbs
, “
The mechanics of hydrothermal systems: II. Fluid mixing and chemical reactions
,”
Ore Geol. Rev.
12
,
45
71
(
2012
).
46.
D. R.
Lester
,
G.
Metcalfe
, and
M. G.
Treffy
, “
Is chaotic advection inherent to porous media flow?
,”
Phys. Rev. Lett.
111
,
174101
(
2013
).
47.
Z.
Chen
,
M. R.
Bown
,
B.
O’Sullivan
,
J. M.
MacInnes
,
R. W. K.
Allen
,
M.
Mulder
,
M.
Blom
, and
R.
van’t Oever
, “
Performance analysis of a folding flow micromixer
,”
Microfluid. Nanofluid.
6
,
763
774
(
2009
).
48.
F.
Raynal
,
A.
Beuf
, and
Ph.
Carrière
, “
Numerical modeling of DNA-chip hybridization with chaotic advection
,”
Biomicrofluidics
7
(
3
),
034107
(
2013
).
49.
See supplemental material at http://dx.doi.org/10.1063/1.4918750 for the trajectory of a single particle in the case of global chaos U1 = 0.25: The trajectory is regularly trapped in the vicinity of the manifolds associated to fixed points of type (3) and (4), see Figure 12(a)and for advection of spot containing a large number of particles in the case of global chaosU1 = 0.25: spreading is limited in the vicinity of the manifolds associated to fixed points of type (3) and (4), see Figure 12(a).
50.
C. D.
Grace
, “
‘Static mixing’ and heat transfer
,”
Chem. Proc. Eng.
52
,
57
59
(
1971
).
51.
M. H.
Pahl
and
E.
Muschelknautz
, “
Statische mischer und ihre anwendung
,”
Chem. Ing. Tech.
52
,
285
291
(
1980
).
52.
S.
Middleman
,
Fundamentals of Polymer Processing
(
McGraw-Hill
,
New-York
,
1977
).
53.
V.
Girault
and
P. A.
Raviart
,
Finite Element Methods for Navier–Stokes Equations
(
Springer-Verlag
,
1986
).

Supplementary Material

You do not currently have access to this content.