Arrays of shallow dimples with depth to diameter ratios of 1.5% and 5% are studied in a turbulent channel flow at Reynolds numbers between 5000 and 35 000. Pressure measurements show that drag reduction of up to 3% is possible. The mechanism of skin friction drag reduction with dimples is the same as that observed for flat surfaces using active methods such as spanwise wall motions or transverse wall jets. The three dimensional dimples introduce streamwise vorticity into the flow which results in spanwise flow components near the wall. The result is that the normal energy cascade to the smaller scales is suppressed, which leads to a reduction in turbulent skin friction drag because of the stabilized flow. Increasing the dimple depth from 1.5% to 5% of its diameter increases the streamwise vorticity introduced, which leads to a greater reduction in skin friction. However, increasing the dimple depth also results in flow separation which increases form drag. The net effect to the total drag depends on the relative dominance between the drag reducing streamwise vorticity and the drag increasing flow separation region. As the Reynolds number increases, the region of flow separation can shrink and result in increasing drag reduction. By understanding the flow physics of drag reduction in dimples, there is opportunity to minimize the form drag by passive contouring of the dimples using non-spherical shapes to optimize the dimple performance.

1.
S. Y.
Won
,
Q.
Zhang
, and
P. M.
Ligrani
, “
Comparisons of flow structure above dimpled surfaces with different dimple depths in a channel
,”
Phys. Fluids
17
,
045105
(
2005
).
2.
N. K.
Burgess
and
P. M.
Ligrani
, “
Effects of dimple depth on channel Nusselt numbers and friction factors
,”
J. Heat Transfer
127
(
8
),
839
847
(
2005
).
3.
G. V.
Kovalenko
,
V. I.
Terekhov
, and
A. A.
Khalatov
, “
Flow regimes in a single dimple on the channel surface
,”
J. Appl. Mech. Tech. Phys.
51
,
839
848
(
2010
).
4.
P. M.
Ligrani
,
J. L.
Harrison
,
G. I.
Mahmood
, and
M. L.
Hill
, “
Flow structure due to dimple depression on a channel surface
,”
Phys. Fluids
13
(
11
),
3442
3451
(
2001
).
5.
H. G.
Kwon
,
S. D.
Hwang
, and
H. H.
Cho
, “
Measurement of local heat/mass transfer coefficients on a dimple using naphthalene sublimation
,”
Int. J. Heat Mass Transfer
54
,
1071
1080
(
2011
).
6.
S. A.
Isaev
,
A. I.
Leontiev
,
N. A.
Kudryavtsev
, and
I. A.
Pyshnyi
, “
The effect of rearrangement of the vortex structure on heat transfer under conditions of increasing depth of a spherical dimple on the wall of a narrow channel
,”
High Temp.
41
(
2
),
229
232
(
2003
).
7.
Z. Y.
Wang
,
K. S.
Yeo
, and
B. C.
Khoo
, “
DNS of low Reynolds number turbulent flows in dimpled channels
,”
J. Turbul.
7
,
N37
(
2006
).
8.
C. M.
Tay
,
Y. T.
Chew
,
B. C.
Khoo
, and
J. B.
Zhao
, “
Development of flow structures over dimples
,”
Exp. Therm. Fluid Sci.
2
,
278
287
(
2014
).
9.
G. I.
Mahmood
and
P. M.
Ligrani
, “
Heat transfer in a dimpled channel: Combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure
,”
Int. J. Heat Mass Transfer
45
,
2011
2020
(
2002
).
10.
P. M.
Ligrani
,
N.
Burgess
, and
S. Y.
Won
, “
Nusselt numbers and flow structure on and above a shallow dimpled surface within a channel including effects of inlet turbulence intensity level
,”
J. Turbomach.
127
,
321
330
(
2005
).
11.
S. A.
Isaev
,
N. V.
Kornev
,
A. I.
Leontiev
, and
E.
Hassel
, “
Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel
,”
Int. J. Heat Mass Transfer
53
,
178
197
(
2010
).
12.
V. V.
Alekseev
,
I. A.
Gachechiladze
,
G. I.
Kiknadze
, and
V. G.
Oleinikov
, “
Tornado-like energy transfer on three-dimensional concavities of reliefs-structure of self-organizing flow, their visualisation, and surface streamlining mechanisms
,” in
Transactions of the 2nd Russian National Conferrence of Heat Transfer, Heat Transfer Intensification Radiation and Complex Heat Transfer
(
Publishing House of Moscow Energy Institute (MEI)
,
Moscow
,
1998
), Vol.
6
, pp.
33
42
.
13.
H.
Lienhart
,
M.
Breuer
, and
C.
Köksoy
, “
Drag reduction by dimples?—A complementary experimental/numerical investigation
,”
Int. J. Heat Fluid Flow
29
(
3
),
783
791
(
2008
).
14.
Y.
Chen
,
Y. T.
Chew
, and
B. C.
Khoo
, “
Enhancement of heat transfer in turbulent channel flow over dimpled surface
,”
Int. J. Heat Mass Transfer
55
,
8100
8121
(
2012
).
15.
J.
Wu
and
K. S.
Yeo
, Flow past dimpled surfaces; part 2: Computational study for turbulent flow in dimpled channels, National University of Singapore, Annual Report on the NUS-Airbus Collaboration Under Project R-265-000-272-597, 2011.
16.
K.-S.
Choi
, “
Near- wall structure of a turbulent boundary layer with riblets
,”
J. Fluid Mech.
208
,
417
458
(
1989
).
17.
G. E.
Karniadakis
and
K.-S.
Choi
, “
Mechanisms on transverse motions in turbulent wall flows
,”
Annu. Rev. Fluid Mech.
35
,
45
62
(
2003
).
18.
R.
Grüneberger
and
W.
Hage
, “
Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings
,”
Exp. Fluids
50
(
2
),
363
373
(
2011
).
19.
K.-S.
Choi
,
J. R.
DeBisschop
, and
B. R.
Clayton
, “
Turbulent boundary layer control by means of spanwise-wall oscillation
,”
AIAA J.
36
(
7
),
1157
1163
(
1998
).
20.
J. I.
Choi
,
C. X.
Xu
, and
H. J.
Sung
, “
Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows
,”
AIAA J.
40
(
5
),
842
850
(
2002
).
21.
W.
Schoppa
and
F.
Hussain
, “
A large-scale control strategy for drag reduction in turbulent boundary layers
,”
Phys. Fluids
10
(
5
),
1049
1051
(
1998
).
22.
G.
Iuso
,
M.
Onorato
,
P. G.
Spazzini
, and
G. M.
Di Cicca
, “
Wall turbulence manipulation by large scale streamwise vortices
,”
J. Fluid Mech.
473
,
23
58
(
2002
).
23.
M.
Quadrio
and
P.
Ricco
, “
Critical assessment of turbulent drag reduction through spanwise wall oscillation
,”
J. Fluid Mech.
521
,
251
271
(
2004
).
24.
H.
Mitsudharmadi
,
C. M. J.
Tay
, and
H. M.
Tsai
, “
Effect of rounded edged dimple arrays on the boundary layer development
,”
J. Visualization
12
,
17
25
(
2009
).
25.
B. C.
Khoo
,
Y. T.
Chew
, and
G. L.
Li
, “
Effects of imperfect spatial resolution on turbulence measurements in the very near-wall viscous sublayer
,”
Exp. Fluids
22
,
327
335
(
1997
).
26.
Y. T.
Chew
,
B. C.
Khoo
, and
G. L.
Li
, “
An investigation of wall effects on hot-wire measurements using a bent sublayer probe
,”
Meas. Sci. Technol.
9
,
67
85
(
1998
).
27.
C. M. J.
Tay
,
B. C.
Khoo
, and
Y. T.
Chew
, “
Determination of hot-wire position from a solid wall in an opaque channel
,”
Meas. Sci. Technol.
23
,
1
8
(
2012
).
28.
R. L.
Mott
,
Applied Fluid Mechanics
, 4th ed. (
Merrill
,
New York
,
1994
).
29.
A. V.
Johansson
and
P. H.
Alfredsson
, “
On the structure of turbulent channel flow
,”
J. Fluid Mech.
122
,
295
314
(
1982
).
30.
F. M.
White
,
Fluid Mechanics
, 4th ed. (
McGraw-Hill
,
New York
,
1999
).
31.
J.
Chen
and
J.
Leung
, “
Drag reduction in a longitudinally grooved flow channel
,”
Ind. Eng. Chem. Fundam.
25
(
4
),
741
745
(
1986
).
32.
J. J.
Rohr
,
G. W.
Anderson
,
L. W.
Reidy
, and
E. W.
Hendricks
, “
A comparison of the drag-reducing benefits of riblets in internal and external flows
,”
Exp. Fluids
13
,
361
368
(
1992
).
33.
M.
Itoh
,
S.
Tamano
,
R.
Iguchi
,
K.
Yokota
,
N.
Akino
,
R.
Hino
, and
S.
Kubo
, “
Turbulent drag reduction by the seal fur surface
,”
Phys. Fluids
18
,
065102
(
2006
).
34.
B.
Frohnapfel
,
J.
Jovanović
, and
A.
Delgado
, “
Experimental investigations of turbulent drag reduction by surface-embedded grooves
,”
J. Fluid Mech.
590
,
107
116
(
2007
).
35.
C. M.
Tay
, “Determining the effect of dimples on drag in a turbulent channel flow,” 49th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, January 2011, AIAA Paper 2011-0682, 2011.
36.
J. M. J.
Den Toonder
,
M. A.
Hulsen
,
G. D. C.
Kuiken
, and
F. T. M.
Nieuwstadt
, “
Drag reduction by polymer additives in a turbulent pipe flow: Numerical and laboratory experiments
,”
J. Fluid Mech.
337
,
193
231
(
1997
).
37.
F.-C.
Li
,
Y.
Kawaguchi
, and
K.
Hishida
, “
Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow
,”
Phys. Fluids
16
(
9
),
3281
3295
(
2004
).
38.
T.
Min
,
J. Y.
Yoo
,
H.
Choi
, and
D. D.
Joseph
, “
Drag reduction by polymer additives in a turbulent channel flow
,”
J. Fluid Mech.
486
,
213
238
(
2003
).
39.
M.
Vlachogiannis
and
T. J.
Hanratty
, “
Influence of wavy structured surfaces and large scale polymer structures on drag reduction
,”
Exp. Fluids
36
,
685
700
(
2004
).
40.
B. F.
Armaly
,
F.
Durst
,
J. C. F.
Pereira
, and
B.
Schönung
, “
Experimental and theoretical investigation of backward-facing step flow
,”
J. Fluid Mech.
127
,
473
496
(
1983
).
41.
T.
Lee
and
D.
Mateescu
, “
Experimental and numerical investigation of 2D backward-facing step flow
,”
J. Fluids Struct.
12
,
703
716
(
1998
).
42.
S.
Song
and
J. K.
Eaton
, “
Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery
,”
Exp. Fluids
36
,
246
258
(
2004
).
You do not currently have access to this content.