In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric thermal stability on wind-turbine wakes. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulence statistics in the wake region as well as the wake meandering characteristics downwind of the turbine. In particular, the enhanced turbulence level associated with positive buoyancy under the convective condition leads to a relatively larger flow entrainment and, thus, a faster wake recovery. For the particular cases considered in this study, the growth rate of the wake is about 2.4 times larger for the convective case than for the stable one. Consistent with this result, for a given distance downwind of the turbine, wake meandering is also stronger under the convective condition compared with the neutral and stable cases. It is also shown that, for all the stability cases, the growth rate of the wake and wake meandering in the vertical direction is smaller compared with the ones in the lateral direction. This is mainly related to the different turbulence levels of the incoming wind in the different directions, together with the anisotropy imposed by the presence of the ground. It is also found that the wake velocity deficit is well characterized by a modified version of a recently proposed analytical model that is based on mass and momentum conservation and the assumption of a self-similar Gaussian distribution of the velocity deficit. Specifically, using a two-dimensional elliptical (instead of axisymmetric) Gaussian distribution allows to account for the different lateral and vertical growth rates, particularly in the convective case, where the non-axisymmetry of the wake is stronger. Detailed analysis of the resolved turbulent kinetic energy budget in the wake reveals also that thermal stratification considerably affects the magnitude and spatial distribution of the turbulence production, dissipation, and transport terms.

1.
L. J.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
2.
J. N.
Sørensen
, “
Aerodynamic aspects of wind energy conversion
,”
Annu. Rev. Fluid Mech.
43
,
427
448
(
2011
).
3.
R. J.
Barthelmie
,
S. C.
Pryor
,
S. T.
Frandsen
,
K. S.
Hansen
,
J. G.
Schepers
,
K.
Rados
,
W.
Schlez
,
A.
Neubert
,
L. E.
Jensen
, and
S.
Neckelmann
, “
Quantifying the impact of wind turbine wakes on power output at offshore wind farms
,”
J. Atmos. Oceanic Technol.
27
(
8
),
1302
1317
(
2010
).
4.
R.
Stull
,
An Introduction to Boundary-Layer Meteorology
(
Kluwer Academic Publishers
,
Dordrecht
,
1988
).
5.
J.
Garratt
,
The Atmospheric Boundary Layer
(
Cambridge University Press
,
UK
,
1994
).
6.
R. W.
Baker
and
S. N.
Walker
, “
Wake measurements behind a large horizontal axis wind turbine generator
,”
Sol. Energy
33
,
5
12
(
1984
).
7.
M.
Magnusson
and
A. S.
Smedman
, “
Influence of atmospheric stability on wind turbine wakes
,”
Wind Energy
18
,
139
152
(
1994
).
8.
R. J.
Barthelmie
and
L. E.
Jensen
, “
Evaluation of wind farm efficiency and wind turbine wakes at the nysted offshore wind farm
,”
Wind Energy
13
,
573
586
(
2010
).
9.
G. V.
Iungo
and
F.
Porté-Agel
, “
Volumetric lidar scanning of wind turbine wakes under convective and neutral atmospheric stability regimes
,”
J. Atmos. Oceanic Technol.
31
(
10
),
2035
2048
(
2014
).
10.
W.
Zhang
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Wind-turbine wakes in a convective boundary layer: A wind-tunnel study
,”
Boundary-Layer Meteorol.
146
,
161
179
(
2013
).
11.
P. E.
Hancock
and
F.
Pascheke
, “
Wind-tunnel simulation of the wake of a large wind turbine in a stable boundary layer: Part 2, the wake flow
,”
Boundary-Layer Meteorol.
151
(
1
),
23
37
(
2014
).
12.
R. E.
Keck
,
M.
Mare
,
J. M.
Churchfield
,
S.
Lee
, and
G.
Larsen
, “
On atmospheric stability in the dynamic wake meandering model
,”
Wind Energy
17
,
1689
1710
(
2014
).
13.
M. J.
Churchfield
,
S.
Lee
,
J.
Michalakes
, and
P. J.
Moriarty
, “
A numerical study of the effects of atmospheric and wake turbine dynamics
,”
J. Turbul.
13
,
N14
(
2012
).
14.
R.
Stoll
and
F.
Porté-Agel
, “
Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain
,”
Water Resour. Res.
42
(
1
),
W01409
(
2006
).
15.
Y. T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary-Layer Meteorol.
138
(
3
),
345
366
(
2011
).
16.
F.
Porté-Agel
,
Y. T.
Wu
,
H.
Lu
, and
R. J.
Conzemius
, “
Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
,”
J. Wind Eng. Ind. Aerodyn.
99
(
4
),
154
168
(
2011
).
17.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
18.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
19.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
1765
(
1991
).
20.
P.
Moin
,
K. D.
Squires
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
(
1991
).
21.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
284
(
2000
).
22.
F.
Porté-Agel
, “
A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer
,”
Boundary-Layer Meteorol.
112
,
81
105
(
2004
).
23.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm
,”
Renewable Energy
75
,
945
955
(
2015
).
24.
J. D.
Albertson
and
M. B.
Parlange
, “
Surfaces length scales and shear stress: Implications for land-atmosphere interactions over complex terrain
,”
Water Resour. Res.
35
,
2121
2132
(
1999
).
25.
F.
Porté-Agel
,
Y. T.
Wu
, and
C. H.
Chen
, “
A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm
,”
Energies
6
(
10
),
5297
5313
(
2013
).
26.
S.
Zilitinkevich
,
I.
Esau
, and
A.
Baklanov
, “
Further comments on the equilibrium height of neutral and stable planetary boundary layers
,”
Q. J. R. Meteorol. Soc.
133
,
265
271
(
2007
).
27.
A.
Peña
,
S. E.
Gryning
, and
C. B.
Hasager
, “
Comparison mixing-length models of the diabatic wind profile over homogeneous terrain
,”
Theor. Appl. Climatol.
100
,
325
335
(
2010
).
28.
Y. H.
Tseng
,
C.
Meneveau
, and
M. B.
Parlange
, “
Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation
,”
Environ. Sci. Technol.
40
,
2653
2662
(
2006
).
29.
M.
Abkar
and
F.
Porté-Agel
, “
A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions
,”
J. Turbul.
13
(
23
),
1
18
(
2012
).
30.
S. A.
Orszag
, “
Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation
,”
J. Atmos. Sci.
27
,
890
895
(
1970
).
31.
C.
Canuto
,
M.
Hussaini
,
A.
Quarteroni
, and
T.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer
,
1988
).
32.
A.
Monin
and
M.
Obukhov
, “
Basic laws of turbulent mixing in the ground layer of the atmosphere
,”
Tr. Akad. Nauk SSSR Geophiz. Inst.
24
,
163
187
(
1954
).
33.
C.
Moeng
, “
A large-eddy simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
46
,
2052
2062
(
1984
).
34.
R.
Stoll
and
F.
Porté-Agel
, “
Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: Surface temperature transitions
,”
J. Atmos. Sci.
66
(
2
),
412
431
(
2009
).
35.
J. A.
Businger
,
J. C.
Wyngaard
,
Y.
Izumi
, and
E. F.
Bradley
, “
Flux-profile relationships in the atmospheric surface layer
,”
J. Atmos. Sci.
28
,
181
189
(
1971
).
36.
K. S.
Hansen
,
R. J.
Barthelmie
,
L. E.
Jensen
, and
A.
Sommer
, “
The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
,”
Wind Energy
15
,
183
196
(
2012
).
37.
M.
Magnusson
and
A. S.
Smedman
, “
Air flow behind wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
80
(
1
),
169
189
(
1999
).
38.
R. J.
Barthelmie
,
S. T.
Frandsen
,
M. N.
Nielsen
,
S. C.
Pryor
,
P. E.
Rethore
, and
H. E.
Jørgensen
, “
Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at middelgrunden offshore wind farm
,”
Wind Energy
10
(
6
),
517
528
(
2007
).
39.
A.
Rosen
and
Y.
Sheinman
, “
The power fluctuations of a wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
59
,
51
68
(
1996
).
40.
Y. T.
Wu
and
F.
Porté-Agel
, “
Atmospheric turbulence effects on wind-turbine wakes: An LES study
,”
Energies
5
(
12
),
5340
5362
(
2012
).
41.
K.
Rados
,
G.
Larsen
,
R.
Barthelmie
,
W.
Schlez
,
B.
Lange
,
G.
Schepers
,
T.
Hegberg
, and
M.
Magnisson
, “
Comparison of wake models with data for offshore wind farms
,”
Wind Energy
25
,
271
280
(
2001
).
42.
L.
Chamorro
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
,”
Boundary-Layer Meteorol.
132
,
129
149
(
2009
).
43.
F.
Bingol
,
J.
Mann
, and
C.
Larsen
, “
Light detection and ranging measurements of wake dynamics part I: One-dimensional scanning
,”
Wind Energy
13
,
51
61
(
2010
).
44.
G.
España
,
S.
Aubrun
,
S.
Loyer
, and
P.
Devinant
, “
Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies
,”
J. Wind Eng. Ind. Aerodyn.
101
(
0
),
24
33
(
2012
).
45.
S.
Kang
,
X.
Yang
, and
F.
Sotiropoulos
, “
On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow
,”
J. Fluid Mech.
744
,
376
403
(
2014
).
46.
M. J.
Dwyer
,
E. G.
Patton
, and
R. H.
Shaw
, “
Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy
,”
Boundary-Layer Meteorol.
84
(
1
),
23
43
(
1997
).
You do not currently have access to this content.