In this paper, we present experimental evidence for the five different states that result from rotating Hagen-Poiseuille flow when it discharges into a 1:8 sudden expansion, namely: stable, convectively unstable, unstable shear layer, stable and unstable vortex breakdowns. Sanmiguel-Rojas et al. [“Three-dimensional structure of confined swirling jets at moderately large Reynolds numbers,” Phys. Fluids 20, 044104 (2008)] numerically predicted four of these five states and mapped the transition from one state to another. Our main objective is to study the onset of instabilities and vortex breakdown in these states experimentally. For this purpose, we visualize the flow at the inlet of the expansion for several values of moderately large Reynolds numbers, Re, and of swirl parameters, S. We analyze the inner region of the state that corresponds to the unstable shear layer in the sudden expansion and find two different states that share the same character, although they have different non-dimensional frequencies. The first relates to an oscillating structure near the axis, which arises at a small value of the swirl parameter, as well as to a generation of vortices that move downstream. The second shows, for greater values of the swirl parameter, vortices interacting with the boundary layer located on the wall of the static container that is perpendicular to the flow direction. In addition, we find a transition from stable to unstable vortex breakdown when perturbations become absolutely unstable inside the rotating pipe flow. Therefore, the most remarkable experimental finding is a new state, namely, unstable or transient vortex breakdown that takes place for the same pair of values (Rea, Sa) at which the onset of the absolute instability curve appears and intersects the region of stable vortex breakdown.

1.
M. P.
Escudier
, “
Vortex breakdown: Observations and explanations
,”
Prog. Aerosp. Sci.
25
,
189
(
1998
).
2.
J. M.
Delery
, “
Aspects of vortex breakdown
,”
Prog. Aerosp. Sci.
30
,
1
-
59
(
1994
).
3.
P.
Billant
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Experimental study of vortex breakdown in swirling jets
,”
J. Fluid Mech.
376
,
183
(
1998
).
4.
M. G.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid Mech.
4
,
195
(
1972
).
5.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Annu. Rev. Fluid Mech.
10
,
221
(
1978
).
6.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
-
537
(
1990
).
7.
S.
Wang
and
Z.
Rusack
, “
On the stability of an axisymmetric rotating flow
,”
Phys. Fluids
8
,
1007
-
1016
(
1996
).
8.
S.
Wang
and
Z.
Rusack
, “
On the stability of non-columnar swirling flows
,”
Phys. Fluids
8
,
1017
-
1023
(
1996
).
9.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdowns
,”
J. Fluid Mech.
45
,
545
(
1971
).
10.
T.
Sarpkaya
, “
Vortex breakdown in swirling conical flows
,”
AIAA J.
9
,
1792
-
1799
(
1971
).
11.
S.
Wang
and
Z.
Rusack
, “
The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown
,”
J. Fluid Mech.
340
,
177
(
1997
).
12.
J.-M.
Chomaz
,
P.
Huerre
, and
L. G.
Redekopp
, “
A frequency selection criterion in spatially developing flows
,”
Stud. Appl. Math.
84
(
2
),
119
-
144
(
1991
).
13.
P. A.
Monkewitz
,
P.
Huerre
, and
J.-M.
Chomaz
, “
Global linear stability analysis of weakly non-parallel shear flows
,”
J. Fluid Mech.
251
,
1
-
20
(
1993
).
14.
R.
Fernández-Feria
and
C.
del Pino
, “
The onset of absolute instability of rotating Hagen-Poiseuille flow: A spatial stability analysis
,”
Phys. Fluids
14
(
9
),
3087
-
3097
(
2002
).
15.
E.
Sanmiguel-Rojas
,
M. A.
Burgos
,
C.
del Pino
, and
R.
Fernandez-Feria
, “
Three-dimensional structure of confined swirling jets at moderately large Reynolds numbers
,”
Phys. Fluids
20
,
044104
(
2008
).
16.
L.
Parras
and
R.
Fernandez-Feria
, “
Interaction of an unconfined vortex with a solid surface
,”
Phys. Fluids
19
,
067104
(
2007
).
17.
J. M.
Beer
and
N. A.
Chigier
,
Combustion Aerodynamics
(
Applied Science Publications
,
1972
).
18.
C.
Ariyaratne
and
T. F.
Jones
, “
Design and optimization of swirl pipe geometry for particle-laden liquids
,”
AIChE J.
53
(
4
),
757
-
768
(
2007
).
19.
R.
Örlü
and
H.
Alfredsson
, “
An experimental study of the near-field mixing characteristics of a swirling jet flow
,”
Flow, Turbul. Combust.
80
(
3
),
323
-
350
(
2008
).
20.
A. M.
Michell
and
J.
Délery
, “
Research into vortex breakdown control
,”
Prog. Aerosp. Sci.
37
(
4
),
385
-
418
(
2001
).
21.
L.
Facciolo
,
N.
Tillmark
,
A.
Talamelli
, and
P. A.
Henrik
, “
A study of swirling turbulent pipe and jet flows
,”
Phys. Fluids
19
,
035105
(
2007
).
22.
I. K.
Toh
,
D.
Honnery
, and
J.
Soria
, “
Axial plus tangential entry swirling jet
,”
Exp. Fluids
48
,
309
-
325
(
2010
).
23.
M. R.
Ruith
,
P.
Chen
,
E.
Meiburg
, and
T.
Maxworthy
, “
Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation
,”
J. Fluid Mech.
486
,
331
-
378
(
2003
).
24.
H.
Liang
and
T.
Maxworthy
, “
An experimental investigation of swirling jets
,”
J. Fluid Mech.
525
,
115
-
159
(
2005
).
25.
F.
Gallaire
,
M.
Ruith
,
E.
Meiburg
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Spiral vortex breakdown as a global mode
,”
J. Fluid Mech.
549
,
71
-
80
(
2006
).
26.
M. A.
Herrada
,
M.
Perez-Saborid
, and
A.
Barrero
, “
Vortex breakdown in compressible flows in pipes
,”
Phys. Fluids
15
,
2208
-
2218
(
2003
).
27.
J. M.
Gallardo-Ruiz
,
C.
del Pino
, and
R.
Fernandez-Feria
, “
Quasicylindrical description of a swirling light gas jet discharging into a heavier ambient gas
,”
Phys. Fluids
22
,
113601
(
2010
).
28.
C. O. U.
Umeh
,
Z.
Rusak
,
E.
Gutmark
,
R.
Villalba
, and
D.-J.
Cha
, “
Experimental and computational study of nonreacting vortex breakdown in a swirl-stabilized combustor
,”
AIAA J.
48
,
2576
-
2585
(
2010
).
29.
C. O. U.
Umeh
,
Z.
Rusak
, and
E.
Gutmark
, “
Vortex breakdown in a swirl-stabilized combustor
,”
J. Propul. Power
28
(
5
),
1037
-
1051
(
2012
).
30.
N.
Syred
, “
A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems
,”
Prog. Energy Combust. Sci.
32
(
2
),
93
-
161
(
2006
).
31.
S.
Terhaar
,
K.
Oberleithner
, and
C. O.
Paschereit
, “
Key parameters governing the precessing vortex core in reacting flows: An experimental and analytical study
,”
Proc. Combust. Inst.
35
,
3347
(
2015
).
32.
M.
Stöhr
,
R.
Sadanandan
, and
W.
Meier
, “
Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame
,”
Exp. Fluids
51
,
1153
(
2011
).
33.
M. Z.
Ismadi
,
P.
Meunier
,
A.
Fouras
, and
K.
Hourigan
, “
Experimental control of vortex breakdown by density effects
,”
Phys. Fluids
23
,
034104
(
2011
).
34.
K.
Oberleithner
,
M.
Sieber
,
C. N.
Nayeri
,
C. O.
Paschereit
,
C.
Petz
,
H. C.
Hege
,
B. R.
Noack
, and
I.
Wygnanski
, “
Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction
,”
J. Fluid Mech.
679
,
383
-
414
(
2011
).
35.
C.
Petz
,
H. C.
Hege
,
K.
Oberleithner
,
M.
Sieber
,
C. N.
Nayeri
,
C. O.
Paschereit
,
I.
Wygnanski
, and
B. R.
Noack
, “
Global modes in a swirling jet undergoing vortex breakdown
,”
Phys. Fluids
23
,
091102
(
2011
).
36.
K.
Oberleithner
and
C. O.
Paschereit
, “
Formation of turbulent vortex breakdown: Intermittency, critically and global instability
,”
AIAA J.
50
,
7
(
2012
).
37.
U. A.
Qadri
,
D.
Mistry
, and
M. P.
Juniper
, “
Structural sensitivity of spiral vortex breakdown
,”
J. Fluid Mech.
720
,
558
-
581
(
2013
).
38.
K.
Shrestha
,
L.
Parras
,
C.
del Pino
,
E.
Sanmiguel-Rojas
, and
R.
Fernandez-Feria
, “
Experimental evidence of convective and absolute instabilities in rotating Hagen-Poiseuille flow
,”
J. Fluid Mech.
716
,
R12
(
2013
).
39.
D. J.
Latornell
and
A.
Pollard
, “
Some observations on the evolution of shear layer instabilities in laminar flow through axisymmetric sudden expansions
,”
Phys. Fluids
29
,
2828
(
1986
).
40.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Instability
(
Cambridge Mathematical Library
,
United Kingdom
,
2004
).
41.
F.
Durst
,
J. C. F.
Pereira
, and
C.
Tropea
, “
The plane symmetric sudden-expansion flow at low Reynolds numbers
,”
J. Fluid Mech.
248
,
567
-
581
(
1993
).
42.
Z.
Rusak
and
T.
Hawa
, “
A weakly nonlinear analysis of the dynamics of a viscous flow in a symmetric channel with a sudden expansion
,”
Phys. Fluids
11
(
12
),
3629
-
3636
(
1999
).
43.
E.
Sanmiguel-Rojas
and
T.
Mullin
, “
Finite-amplitude solutions in the flow through a sudden expansion in a circular pipe
,”
J. Fluid Mech.
691
,
201
-
213
(
2012
).
You do not currently have access to this content.