The computational fluid dynamic model of a live-sized dragonfly (Sympetrum flaveolum) hindwing is simulated according to the in-flight flapping motions measured in kinematic experiments. The flapping motion of the simulated wing is accomplished by dynamically re-gridding the wing-fluid mesh according to the established kinematic model for each flapping pattern. Comparisons between two distinct flapping patterns (double figure-eight and simple figure-eight) are studied via analysis of the aerodynamic forces and flow field structures. The result shows that additional lift is generated during supination and upstroke for the double figure-eight pattern, while maximum thrust is generated during pronation for the simple figure-eight pattern. In addition, through our comparisons of the different kinematics, we are able to reveal the mechanism behind the leading edge vortex stabilization prior to supination and the kinematic movement responsible for additional lift generation during supination. By increasing the translational deceleration during stroke-end rotations in the double figure-eight flapping pattern, a trailing edge vortex is formed which is stronger as compared to the single figure-eight flapping pattern, thus enhancing the lift.

1.
A. L. R.
Thomas
,
G. K.
Taylor
,
R. B.
Srygley
,
R. L.
Nudds
, and
R. J.
Bomphrey
, “
Dragonfly flight: Free-flight and tethered flow viualisations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack
,”
J. Exp. Biol.
207
,
4299
-
4323
(
2004
).
2.
C.
Somps
and
M.
Luttges
, “
Dragonfly flight: Novel uses of unsteady separated flows
,”
Science
228
(
4705
),
1326
-
1329
(
1985
).
3.
M. H.
Dickinson
,
F. O.
Lehmann
, and
K. G.
Gotz
, “
The active control of wing rotation by Drosophila
,”
J. Exp. Biol.
182
(
1
),
173
-
189
(
1993
).
4.
S.
Sunada
,
L.
Zeng
, and
K.
Kawachi
, “
The relationship between dragonfly wing structure and torsional deformation
,”
J. Theor. Biol.
193
,
39
-
45
(
1998
).
5.
C. P.
Ellington
, “
The aerodynamics of hovering insect flight. III. Kinematics
,”
Philos. Trans. R. Soc., B
305
(
1122
),
41
-
78
(
1984
).
6.
S.
Sudo
,
K.
Tsuyuki
, and
J.
Tani
, “
Wing morphology of some insects
,”
JSME Int. J., Ser. C
43
(
4
),
895
-
900
(
2000
).
7.
K.
Tsuyuki
,
S.
Sudo
, and
J.
Tani
, “
Morphology of insect wings and airflow produced by flapping insects
,”
J. Intell. Mater. Syst. Struct.
17
,
743
-
751
(
2006
).
8.
J. M.
Wakeling
and
C. P.
Ellington
, “
Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight
,”
J. Exp. Biol.
200
(
3
),
557
-
582
(
1997
).
9.
W. J.
Maybury
and
F.-O.
Lehmann
, “
The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings
,”
J. Exp. Biol.
207
(
26
),
4707
-
4726
(
2004
).
10.
Y. H.
Chen
,
M.
Skote
,
Y.
Zhao
, and
W. M.
Huang
, “
Dragonfly (Sympetrum flaveolum) flight: Kinematic measurement and modelling
,”
J. Fluids Struct.
40
,
115
-
126
(
2013
).
11.
H.
Wang
,
L.
Zeng
, and
H.
Liu
, “
Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies
,”
J. Exp. Biol.
206
,
745
-
757
(
2003
).
12.
Z. J.
Wang
, “
Two dimensional mechanism for insect hovering
,”
Phys. Rev. Lett.
85
(
10
),
2216
(
2000
).
13.
T.
Weis-Fogh
, “
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
,”
J. Exp. Biol.
59
,
169
-
230
(
1973
).
14.
C. P.
Ellington
,
C.
Van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
(
19/26
),
626
-
630
(
1996
).
15.
C. P.
Ellington
, “
The aerodynamics of hovering insect flight. II. Morphological parameters
,”
Philos. Trans. R. Soc., B
305
(
1122
),
17
-
40
(
1984
).
16.
F. O.
Minotti
, “
Unsteady two-dimensional theory of a flapping wing
,”
Phys. Rev. E
66
(
5
),
051907
(
2002
).
17.
S. P.
Sane
and
M. H.
Dickinson
, “
The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight
,”
J. Exp. Biol.
205
(
8
),
1087
-
1096
(
2002
).
18.
L. I.
Sedov
, in
Two-Dimensional Problems in Fuild Dynamics and Aero-Dynamics
(
Interscience
,
New York
,
1965
), pp.
20
-
30
.
19.
S.
Sunada
,
K.
Kawachi
,
A.
Matsumoto
, and
A.
Sakaguchi
, “
Unsteady forces on a two-dimensional wing in plunging and pitching motions
,”
AIAA J.
39
(
7
),
1230
-
1239
(
2001
).
20.
R.
Zbikowski
, “
On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles
,”
Philos. Trans. R. Soc., A
360
(
1791
),
273
-
290
(
2002
).
21.
S. P.
Sane
, “
The aerodynamics of insect flight
,”
J. Exp. Biol.
206
,
4191
-
4208
(
2003
).
22.
M.
Sun
and
J.
Tang
, “
Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion
,”
J. Exp. Biol.
205
,
55
-
70
(
2002
).
23.
M. H.
Dickinson
,
F.-O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
(
5422
),
1954
-
1960
(
1999
).
24.
Y. H.
Chen
,
M.
Skote
,
Y.
Zhao
, and
W. M.
Huang
, “
Stiffness evaluation of the leading edge of the dragonfly wing via laser vibrometer
,”
Mater. Lett.
97
,
166
-
168
(
2013
).
25.
J. K.
Wang
and
M.
Sun
, “
A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight
,”
J. Exp. Biol.
208
(
19
),
3785
-
3804
(
2005
).
26.
Z. J.
Wang
, “
The role of drag in insect hovering
,”
J. Exp. Biol.
207
(
23
),
4147
-
4155
(
2004
).
27.
S. P.
Sane
and
M. H.
Dickinson
, “
The control of flight force by a flapping wing: Lift and drag production
,”
J. Exp. Biol.
204
(
15
),
2607
-
2626
(
2001
).
28.
M.
Sun
and
S. L.
Lan
, “
A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering
,”
J. Exp. Biol.
207
(
11
),
1887
-
1901
(
2004
).
29.
H.
Liu
,
C. P.
Ellington
,
K.
Kawachi
,
C.
Van Den Berg
, and
A. P.
Willmott
, “
A computational fluid dynamic study of hawkmoth hovering
,”
J. Exp. Biol.
201
(
4
),
461
-
477
(
1998
).
30.
J. M.
Wakeling
and
C. P.
Ellington
, “
Dragonfly flight. III. Lift and power requirements
,”
J. Exp. Biol.
200
(
3
),
583
-
600
(
1997
).
31.
J.
Xu
,
C.
Zhao
,
Y.
Zhang
, and
Y.
Zhang
, “
Effect of flapping trajectories on the dragonfly aerodynamics
,”
Chin. Sci. Bull.
51
(
7
),
777
-
784
(
2006
).
32.
H.
Aono
and
H.
Liu
, “
Vortical structure and aerodynamics of hawkmoth hovering
,”
J. Biomech. Sci. Eng.
1
(
1
),
234
-
245
(
2006
).
33.
S. N.
Fry
,
R.
Sayaman
, and
M. H.
Dickinson
, “
The aerodynamics of free-flight maneuvers in Drosophila
,”
Science
300
(
5618
),
495
(
2003
).
34.
Z. J.
Wang
,
J. M.
Birch
, and
M. H.
Dickinson
, “
Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments
,”
J. Exp. Biol.
207
,
449
-
460
(
2004
).
35.
C.
Koehler
,
T.
Wischgoll
,
D.
Haibo
, and
Z.
Gaston
, “
Vortex visualization in ultra low Reynolds number insect flight
,”
IEEE Trans. Visualization Comput. Graphics
17
(
12
),
2071
-
2079
(
2011
).
36.
H.
Nagai
,
K.
Isogai
,
T.
Fujimoto
, and
T.
Hayase
, “
Experimental and numerical study of forward flight aerodynamics of insect flapping wing
,”
AIAA J.
47
(
3
),
730
-
742
(
2009
).
37.
M.
Dickinson
, “
The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers
,”
J. Exp. Biol.
192
(
1
),
179
-
206
(
1994
).
38.
R. B.
Srygley
and
A. L. R.
Thomas
, “
Unconventional lift-generating mechanisms in free-flying butterflies
,”
Nature
420
,
660
-
664
(
2002
).
39.
C. P.
Ellington
, “
The aerodynamics of hovering insect flight. IV. Aeorodynamic mechanisms
,”
Philos. Trans. R. Soc., B
305
(
1122
),
79
-
113
(
1984
).
40.
T. Y.
Wu
, “
Fish swimming and bird/insect flight
,”
Annu. Rev. Fluid Mech.
43
(
1
),
25
-
58
(
2011
).
41.
W. B.
Dickson
and
M. H.
Dickinson
, “
The effect of advance ratio on the aerodynamics of revolving wings
,”
J. Exp. Biol.
207
(
24
),
4269
-
4281
(
2004
).
42.
J. M.
Birch
,
W. B.
Dickson
, and
M. H.
Dickinson
, “
Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers
,”
J. Exp. Biol.
207
(
7
),
1063
-
1072
(
2004
).
43.
G.
Luo
and
M.
Sun
, “
The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings
,”
Acta Mech. Sin.
21
(
6
),
531
-
541
(
2005
).
44.
M.
Okamoto
,
K.
Yasuda
, and
A.
Azuma
, “
Aerodynamic characteristics of the wings and body of a dragonfly
,”
J. Exp. Biol.
199
,
281
-
294
(
1996
).
45.
S. L.
Lan
and
M.
Sun
, “
Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number
,”
Acta Mech.
149
(
1
),
135
-
147
(
2001
).
46.
J. M.
Birch
and
M. H.
Dickinson
, “
Spanwise flow and the attachment of the leading-edge vortex on insect wings
,”
Nature
412
,
729
-
733
(
2001
).
You do not currently have access to this content.