The interest on shedding and coalescence of sessile droplets arises from the importance of these phenomena in various scientific problems and industrial applications such as ice formation on wind turbine blades, power lines, nacelles, and aircraft wings. It is shown recently that one of the ways to reduce the probability of ice accretion on industrial components is using superhydrophobic coatings due to their low adhesion to water droplets. In this study, a combined experimental and numerical approach is used to investigate droplet shedding and coalescence phenomena under the influence of air shear flow on a superhydrophobic surface. Droplets with a size of 2 mm are subjected to various air speeds ranging from 5 to 90 m/s. A numerical simulation based on the Volume of Fluid method coupled with the Large Eddy Simulation turbulent model is carried out in conjunction with the validating experiments to shed more light on the coalescence of droplets and detachment phenomena through a detailed analysis of the aerodynamics forces and velocity vectors on the droplet and the streamlines around it. The results indicate a contrast in the mechanism of two-droplet coalescence and subsequent detachment with those related to the case of a single droplet shedding. At lower speeds, the two droplets coalesce by attracting each other with successive rebounds of the merged droplet on the substrate, while at higher speeds, the detachment occurs almost instantly after coalescence, with a detachment time decreasing exponentially with the air speed. It is shown that coalescence phenomenon assists droplet detachment from the superhydrophobic substrate at lower air speeds.

1.
N.
Ashgriz
,
Handbook of Atomization and Sprays
(
Springer
,
New York
,
2011
).
2.
L.
Duchemin
,
J.
Eggers
, and
C.
Josserand
, “
Inviscid coalescence of drops
,”
J. Fluid Mech.
487
,
167
(
2003
).
3.
A.
Menchaca-Rocha
,
A.
Martinez-Davalos
, and
R.
Nunez
, “
Coalescence of liquid drops by surface tension
,”
Phys. Rev. E
63
,
046309
(
2001
).
4.
S. G.
Bradley
and
C. D.
Stow
, “
Collisions between liquid drops
,”
Philos. Trans. R. Soc., A
287
,
635
(
1978
).
5.
E. B.
White
and
J. A. J.
Schmucker
, “
A runback criterion for water drops in a turbulent accelerated boundary layer
,”
J. Fluids Eng.
130
,
061302
(
2008
).
6.
A. J. B.
Milne
and
A.
Amirfazli
, “
Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces
,”
Langmuir
25
,
14155
(
2009
).
7.
M.
Holl
,
Z.
Patek
, and
L.
Smrcek
, “Wind tunnel testing of performance degradation of ice contaminated airfoils,” Proceedings of the 22nd International Congress of Aeronautics sciences, Harrogate, UK, 27 August-1 September 2000, paper no. 3.1.1.
8.
M. W.
Lee
,
D. K.
Kang
,
S. S.
Yoon
, and
A. L.
Yarin
, “
Coalescence of two drops on partially wettable substrates
,”
Langmuir
28
,
3791
(
2012
).
9.
J.
Frenkel
, “
Viscous flow of crystalline bodies under the action of surface tension
,”
J. Phys. Moscow
9
,
385
(
1945
).
10.
J.
Eggers
,
J. R.
Lister
, and
H. A.
Stone
, “
Coalescence of liquid drops
,”
J. Fluid Mech.
401
,
293
(
1999
).
11.
J.
Eggers
, “
Coalescence of spheres by surface diffusion
,”
Phys. Rev. Lett.
80
,
2634
(
1998
).
12.
G.
Vorst
, “
Integral method for a two-dimensional Stokes flow with shrinking holes applied to viscous sintering
,”
J. Fluid Mech.
257
,
667
(
1993
).
13.
G.
Vorst
, “
Modeling and numerical simulation of viscous sintering
,” Ph.D. thesis,
Eindhoven University of Technology, Febodruk-Enschede
, The Netherlands,
1994
.
14.
W. D.
Ristenpart
,
P. D.
McCalla
,
R. V.
Roy
, and
H. A.
Stone
, “
Coalescence of spreading drops on a wettable substrate
,”
Phys. Rev. Lett.
97
,
064501
(
2006
).
15.
R. D.
Narhe
,
D. A.
Beysens
, and
Y. D.
Pomeau
, “
Dynamic drying in the early-stage coalescence of drops sitting on a plate
,”
Europhys. Lett.
81
,
46002
(
2008
).
16.
S. T.
Thoroddsen
,
K.
Takehara
, and
T. G.
Etoh
, “
The coalescence speed of a pendant and a sessile drop
,”
J. Fluid Mech.
527
,
85
(
2005
).
17.
M.
Wu
,
T.
Cubad
, and
C. M.
Ho
, “
Scaling law in liquid drop coalescence driven by surface tension
,”
Phys. Fluids
16
,
51
(
2004
).
18.
M.
Farhangi
,
P. J.
Graham
,
N. R.
Choudhury
, and
A.
Dolatabadi
, “
Induced detachment of coalescing droplets on superhydrophobic surfaces
,”
Langmuir
28
,
1290
(
2012
).
19.
P. J.
Graham
,
M.
Farhangi
, and
A.
Dolatabadi
, “
Dynamics of droplet coalescence in response to increasing hydrophobicity
,”
Phys. Fluids
24
,
112105
(
2012
).
20.
S.
Moghtadernejad
,
M.
Mohammadi
,
M.
Jadidi
,
M.
Tembely
, and
A.
Dolatabadi
, “
Shear driven droplet shedding on surfaces with various wettabilities
,”
SAE Int. J. Aerosp.
6
,
459
(
2013
).
21.
S.
Moghtadernejad
,
M.
Jadidi
,
M.
Tembely
,
N.
Esmail
, and
A.
Dolatabadi
, “
Concurrent droplet coalescence and solidification on surfaces with various wettabilities
,”
J. Fluids Eng.
(published online 2015).
22.
M. D.
Abramo
,
P. J.
Magelhaes
, and
J. S.
Ram
, “
Image processing with ImageJ
,”
Biophotonics Int.
11
,
36
(
2004
).
23.
OpenFOAM, ESI-OpenCFD, http://www.openfoam.com/.
24.
R.
Scardovelli
and
S.
Zaleski
, “
Direct numerical simulation of free-surface and interfacial flow
,”
Annu. Rev. Fluid Mech.
31
,
567
(
1999
).
25.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
26.
H.
Rusche
, “
Computational fluid dynamics of dispersed two-phase flows at high phase fractions
,” Ph.D. thesis,
Imperial College University of London
,
2002
.
27.
Y.
Sui
,
H.
Ding
, and
P. D. M.
Spelt
, “
Numerical simulations of flows with moving contact lines
,”
Annu. Rev. Fluid Mech.
46
,
97
(
2014
).
28.
Y.
Shikhmurzaev
, “
Moving contact lines in liquid/liquid/solid systems
,”
J. Fluid Mech.
334
,
211
(
1997
).
29.
T. D.
Blake
and
J. M.
Haynes
, “
Kinetics of liquid/liquid displacements
,”
J. Colloid Interface Sci.
30
,
421
(
1969
).
30.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
(
1986
).
31.
S. F.
Kistler
, “
Hydrodynamics of wetting
,” in
Wettability
, edited by
J. C.
Berg
(
Marcel Dekker
,
New York
,
1993
), p.
311
.
32.
O.
Weinstein
and
L. M.
Pismen
, “
Scale dependence of contact line computations
,”
Math. Modell. Nat. Phenom.
3
,
98
(
2008
).
33.
S.
Afkhami
,
S.
Zaleski
, and
M.
Bussmann
, “
A mesh-dependent model for applying dynamic contact angles to VOF simulations
,”
J. Comput. Phys.
228
,
5370
(
2009
).
34.
Y.
Sui
and
P. D.
Spelt
, “
An efficient computational model for macroscale simulations of moving contact lines
,”
J. Comput. Phys.
242
,
37
(
2013
).
35.
S.
Sikalo
,
H. D.
Wilhelm
,
I. V.
Roisman
,
S.
Jakirlic
, and
C.
Tropea
, “
Dynamic contact angle of spreading droplets: Experiments and simulations
,”
Phys. Fluids
17
,
062103
(
2005
).
36.
I. V.
Roisman
,
L.
Opfer
,
C.
Tropea
,
M.
Raessi
,
J.
Mostaghimi
, and
S.
Chandra
, “
Drop impact onto a dry surface: Role of the dynamic contact angle
,”
Colloids Surf., A
322
,
183
(
2008
).
37.
I.
Malgarinos
,
N.
Nikolopoulos
,
M.
Marengo
,
C.
Antonini
, and
M.
Gavaises
, “
VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model
,”
Adv. Colloid Interface Sci.
212
,
1
(
2014
).
38.
A.
Criscione
,
R.
Röhrig
,
L.
Opfer
,
I.
Roisman
, and
S.
Jakirlic
, “Numerical investigation of impacting water drops in air cross-flow,” ILASS — Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal, September 2011.
39.
A. W.
Vreman
, “
An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications
,”
Phys. Fluids
16
,
3670
(
2004
).
40.
C.
Fureby
,
G.
Tabor
,
H. G.
Weller
, and
A. D.
Gosman
, “
A comparative study of subgrid scale models in homogeneous isotropic turbulence
,”
Phys. Fluids
9
,
1416
(
1997
).
41.
A.
Yoshizawa
and
K.
Horiuti
, “
A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows
,”
J. Phys. Soc. Jpn.
54
,
2834
(
1985
).
42.
D. P.
De Witt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
New York
,
1990
), p.
161
, Eq. 6.24.
43.
S.
Tanguy
and
A.
Berlemont
, “
Application of a level set method for simulation of droplet collisions
,”
Int. J. Multiphase Flow
31
,
1015
(
2005
).
44.
Lord
Rayleigh
, “
On the capillary phenomena of jets
,”
Proc. R. Soc. London
29
,
71
(
1879
).
45.
C.
Antonini
,
A.
Amirfazli
, and
M.
Marengo
, “
Drop impact and wettability: From hydrophilic to superhydrophobic surfaces
,”
Phys. Fluids
24
,
102104
(
2012
).
46.
E.
Villermaux
and
B.
Bossa
, “
Drop fragmentation on impact
,”
J. Fluid Mech.
668
,
412
(
2011
).
47.
D.
Richard
,
C.
Clanet
, and
D.
Quere
, “
Surface phenomena: Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
48.
M.
Reyssat
,
D.
Richard
,
C.
Clanet
, and
D.
Quere
, “
Dynamical superhydrophobicity
,”
Faraday Discuss.
146
,
19
(
2010
).
49.
Y. J.
Jiang
,
A.
Umemura
, and
C. K.
Law
, “
An experimental investigation on the collision behaviour of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
(
1992
).
50.
K.
Sugioka
and
S.
Komori
, “
Drag and lift forces acting on a spherical water droplet in homogeneous linear shear air flow
,”
J. Fluid Mech.
570
,
155
(
2007
).
You do not currently have access to this content.