When one brings a wet paintbrush into contact with a vertical watercolor paper, the paint may wick into the porous sheet completely or run down to ruin the art. We study a simple model of this spreading dynamics of liquids on hydrophilic porous sheets under the effects of gravity, using a capillary as a liquid source and thin fabrics of non-woven polyethylene terephthalate. Upon finding the maximum flow rate, Qw, that can be absorbed into the fabric, we show that the model can be used to obtain an estimate of the in-plane permeability of fabrics in a simpler manner than the conventional schemes. The shape of a wetting area that grows when the flow rate exceeds Qw to lead to rivulet formation is also theoretically given. The nose shape of the wetting front is shown to be time-invariant, while its profile depends on the properties of the liquid and the fabric. This study can be applied to understand and improve the liquid absorption behavior of hygiene items, heating, ventilation, and air-conditioning equipments, and fuel cell membranes in addition to elucidating the mundane painting activity.

1.
K. M.
Pillai
and
S. G.
Advani
, “
Wicking across a fiber-bank
,”
J. Colloid Interface Sci.
183
,
100
-
110
(
1996
).
2.
A. W.
Martinez
,
S. T.
Phillips
, and
G. M.
Whitesides
, “
Three-dimensional microfluidic devices fabricated in layered paper and tape
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
19606
-
19611
(
2008
).
3.
M.
Landeryou
,
I.
Eames
, and
A.
Cottenden
, “
Infiltration into inclined fibrous sheets
,”
J. Fluid Mech.
529
,
173
-
193
(
2005
).
4.
X.
Ma
,
G.
Ding
,
Y.
Zhang
, and
K.
Wang
, “
Airside characteristics of heat, mass transfer and pressure drop for heat exchangers of tube-in hydrophilic coating wavy fin under dehumidifying conditions
,”
Int. J. Heat Mass Transfer
52
,
4358
-
4370
(
2009
).
5.
A.
Lee
,
M. W.
Moon
,
H.
Lim
,
W. D.
Kim
, and
H.-Y.
Kim
, “
Water harvest via dewing
,”
Langmuir
28
,
10183
-
10191
(
2012
).
6.
A.
Tamayol
and
M.
Bahrami
, “
Water permeation through gas diffusion layers of proton exchange membrane fuel cells
,”
J. Power Sources
196
,
6356
-
6361
(
2011
).
7.
W. C.
Sherbrooke
,
Introduction to Horned Lizards of North America
(
University of California Press
,
Berkeley, CA
,
2003
).
8.
C.
Gans
,
R.
Merlin
, and
W. F. C.
Blumer
, “
The water-collecting mechanism of Moloch horridus re-examined
,”
Amphibia-Reptilia
3
,
57
(
1982
).
9.
S.
Schiaffino
and
A. A.
Sonin
, “
Molten drop deposition and solidification at low Weber numbers
,”
Phys. Fluids
9
,
3172
-
3187
(
1997
).
10.
N.
Mao
and
S. J.
Russell
, “
Capillary pressure and liquid wicking in three-dimensional nonwoven materials
,”
J. Appl. Phys.
104
,
034911
(
2008
).
11.
G. W.
Jackson
and
D. F.
James
, “
The permeability of fibrous porous media
,”
Can. J. Chem. Eng.
64
,
364
(
1986
).
12.
P.
Xu
and
B. M.
Yu
, “
Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry
,”
Adv. Water Resour.
31
,
74
-
81
(
2008
).
13.
N.
Mao
, “
Permeability in engineered non-woven fabrics having patterned structure
,”
Text. Res. J.
79
,
1348
-
1357
(
2009
).
14.
A.
Nabovati
,
E. W.
Llewellin
, and
A. C. M.
Sousa
, “
A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method
,”
Composites Part A
40
,
860
-
869
(
2009
).
15.
C. H.
Shih
and
L. J.
Lee
, “
Effect of fiber architecture on permeability in liquid composite molding
,”
Polym. Compos.
19
,
626
-
639
(
1998
).
16.
G.
Løvoll
,
Y.
Méheust
,
K. J.
Måløy
,
E.
Aker
, and
J.
Schmittbuhl
, “
Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study
,”
Energy
30
,
861
-
872
(
2005
).
17.
H. E.
Huppert
and
A. W.
Woods
, “
Gravity-driven flows in porous layers
,”
J. Fluid Mech.
292
,
55
-
69
(
1995
).
18.
D.
Vella
and
H. E.
Huppert
, “
Gravity currents in a porous medium at an inclined plane
,”
J. Fluid Mech.
555
,
353
-
362
(
2006
).
19.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
(
1921
).
20.
J.
Kim
,
M.-W.
Moon
,
K.-R.
Lee
,
L.
Mahadevan
, and
H.-Y.
Kim
, “
Hydrodynamics of writing with ink
,”
Phys. Rev. Lett.
107
,
264501
(
2011
).
21.
H.
Tan
and
K. M.
Pillai
, “
A method to estimate the accuracy of radial flow-based permeability measuring devices
,”
J. Compos. Mater.
43
,
2307
-
2332
(
2009
).
22.
G. W.
Scherer
,
J. J.
Valenza
, and
G.
Simmons
, “
New methods to measure liquid permeability in porous materials
,”
Cem. Concr. Res.
37
,
386
-
397
(
2007
).
23.
J. R.
Weitzenbock
,
R. A.
Shenoi
, and
P. A.
Wilson
, “
Radial flow permeability measurement. Part B: Application
,”
Composites Part A
30
,
797
-
813
(
1999
).
24.
W.
Nusselt
, “
The condensation of steam on cooled surfaces
,”
Z. Ver. Dtsch. Ing.
60
,
541
-
546
(
1916
).
25.
S. J.
Kim
,
M.-W.
Moon
,
K.-R.
Lee
,
D.-Y.
Lee
,
Y. S.
Chang
, and
H.-Y.
Kim
, “
Liquid spreading on superhydrophilic micropillar arrays
,”
J. Fluid Mech.
680
,
477
-
487
(
2011
).
You do not currently have access to this content.