When a hard-boiled egg spins through a pool of milk on the kitchen counter, the milk rises up the sides of the egg and droplets are ejected. This phenomenon occurs when any partially submerged object whose radius increases upward from the fluid surface (e.g., spheres, inverted cones, and rings) spins in a liquid bath. The fluid ejects from the surface near the maximum radius in one of three ejection modes: jets, sheets, or sheet breakup. Additionally, a surprisingly large flow rate is induced by the spinning object. In this study, we used spheres to determine the effects of experimental parameters on the induced flow rate. We characterized the modes of ejection and measured the sheet breakup distance using high-speed imaging. The basis of our closed form analytical model utilizes an integral momentum boundary layer analysis both beneath the free surface and in the thin film attached to the sphere. We present criteria defining the transitions between ejection modes and the radius where liquid sheets break up in the sheet ejection regime. Criteria defining the transitions between ejection modes and the radius where liquid sheets break up in the sheet ejection regime shows good agreement with experiments.

1.
T.
Von Karmán
, “
Uber laminare und turbulente reibung
,”
Z. Angew. Math. Mech.
1
,
233
252
(
1921
).
2.
G.
Gutierrez
, “
Fluid flow up the wall of a spinning egg
,”
Am. J. Phys.
66
,
442
(
1998
).
3.
J. C.
Martinez
, “
Fluid flow up a spinning egg and the coriolis force
,”
Eur. J. Phys.
27
,
805
(
2006
).
4.
L.
Howarth
, “
Note on the boundary layer on a rotating sphere
,”
Philos. Mag. Ser. 7
42
,
1308
1315
(
1951
).
5.
S. D.
Nigam
, “
Note on the boundary layer on a rotating sphere
,”
Z. Angew. Math. Phys.
5
,
151
155
(
1954
).
6.
S. N.
Singh
, “
Laminar boundary layer on a rotating sphere
,”
Phys. Fluids
13
,
2452
(
1970
).
7.
R.
Manohar
, “
The boundary layer on a rotating sphere
,”
Z. Angew. Math. Phys.
18
,
320
330
(
1967
).
8.
A.
Samad
and
S. J.
Garrett
, “
On the laminar boundary-layer flow over rotating spheroids
,”
Int. J. Eng. Sci.
48
,
2015
2027
(
2010
).
9.
F.
Bowden
and
R.
Lord
, “
The aerodynamic resistance to a sphere rotating at high speed
,”
Proc. R. Soc. London, Ser. A
271
,
143
(
1963
).
10.
F.
Savart
, “
Memoire sur le choc de deux veines liquides animes de mouvements directement opposs
,”
Ann. Chim. Phys.
54
,
257
310
(
1833
).
11.
C.
Clanet
and
E.
Villermaux
, “
Life of a smooth liquid sheet
,”
J. Fluid Mech.
462
,
307
(
2002
).
12.
E.
Villermaux
and
C.
Clanet
, “
Life of a flapping liquid sheet
,”
J. Fluid Mech.
462
,
341
(
2002
).
13.
G.
Taylor
, “
The dynamics of thin sheets of fluid. iii. Disintegration of fluid sheets
,”
Proc. R. Soc. London, Ser. A
253
,
313
321
(
1959
).
14.
S. P.
Lin
and
W. Y.
Jiang
, “
Absolute and convective instability of a radially expanding liquid sheet
,”
Phys. Fluids
15
,
1745
(
2003
).
15.
A.
Lefebvre
,
Atomization and Sprays
,
Combustion: An International Series
, edited by
N.
Chigier
(
Hemisphere Publishing Corporation
,
1989
).
16.
D. L.
Pazhi
and
V. S.
Galustov
,
Fundamentals of Liquid Atomization
(
Khimiya, Moscow
,
1984
) (in Russian).
17.
J. O.
Hinze
and
H.
Milborn
, “
Atomization of liquids by means of a rotating cup
,”
ASME, J. Appl. Mech.
17
,
145
153
(
1950
).
18.
R. P.
Fraser
,
N.
Dombrowski
, and
J. H.
Routley
, “
The production of uniform liquid sheets from spinning cups
,”
Chem. Eng. Sci.
18
,
315
321
(
1963
).
19.
R. P.
Fraser
,
N.
Dombrowski
, and
J. H.
Routley
, “
The filming of liquids by spinning cups
,”
Chem. Eng. Sci.
18
,
323
337
(
1963
).
20.
P.
Eisenklam
, “
On ligament formation from spinning discs and cups
,”
Chem. Eng. Sci.
19
,
693
694
(
1964
).
21.
V. A.
Borodin
,
Y. F.
Dityakin
,
L. A.
Klyachko
, and
V. I.
Yagodkin
,
Liquid Atomization
(
Mashinostroenie, Moscow
,
1967
) (in Russian).
22.
N.
Cheng
, “
Formula for the viscosity of a glycerol-water mixture
,”
Ind. Eng. Chem. Res.
47
,
3285
3288
(
2008
).
23.
D.
Khossravi
and
K. A.
Connors
, “
Solvent effects on chemical processes. 3. Surface tension of binary aqueous organic solvents
,”
J. Solution Chem.
22
,
321
(
1993
).
24.
Y.
Kohama
and
R.
Kobayashi
, “
Boundary-layer transition and the behaviour of spiral vortices on rotating spheres
,”
J. Fluid Mech.
137
,
153
164
(
1983
).
25.
S. J.
Garrett
and
N.
Peake
, “
The stability and transition of the boundary layer on a rotating sphere
,”
J. Fluid Mech.
456
,
199
218
(
2002
).
26.
K.
Pohlhausen
, “
Zur naherungsweisen integration der differentialgleichung der laminaren grenzschicht
,”
Z. Angew. Math. Mech.
1
,
252
268
(
1921
).
27.
L.
Rosenhead
,
Laminar Boundary Layers
(
Oxford University Press
,
New York
,
1963
).
28.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
,”
Proc. R. Soc. London, Ser. A
201
,
192
196
(
1950
).
29.
E. J.
Lavernia
and
Y.
Wu
,
Spray Atomization and Deposition
(
John Wiley & Sons Ltd.
,
1996
).
30.
L.
Bayvel
and
Z.
Orzechowski
,
Liquid Atomization
,
Combustion: An International Series
, edited by
N.
Chigier
(
Taylor & Francis
,
1993
).
You do not currently have access to this content.