We propose a novel strategy for designing chaotic micromixers using curved channels confined between two flat planes. The location of the separatrix between the Dean vortices, induced by centrifugal forces, is dependent on the location of the maxima of axial velocity. An asymmetry in the axial velocity profile can change the location of the separatrix. This is achieved physically by introducing slip alternatingly at the top and bottom walls. This leads to streamline crossing and Lagrangian chaos. An approximate analytical solution of the velocity field is obtained using perturbation theory. This is used to find the Lagrangian trajectories of fluid particles. Poincare sections taken at periodic locations in the axial direction are used to study the extent of chaos. We study two microchannel designs, called circlet and serpentine, in which the Dean vortices in adjacent half cells are co-rotating and counter-rotating, respectively. The extent of mixing, at low Re and low slip length, is shown to be greater in the serpentine case. Wide channels are observed to have much better mixing than tall channels; an important observation not made for separatrix flows till now. Eulerian indicators are used to gauge the extent of mixing, with varying slip length, and it is shown that an optimum slip length exists which maximizes the mixing in a particular geometry. Once the parameter space of relatively high mixing is identified, detailed variance computations are carried out to identify the detailed features.

1.
H.
Aref
,
J. R.
Blake
,
J. H. E.
Cartwright
,
H. J. H.
Clercx
,
U.
Feudel
,
U. M. R. C.
Saint-gobain
,
Y.
Le Guer
,
R. S.
Mackay
,
G.
Metcalfe
,
I.
Mezi
, and
R.
Sturman
, “
Frontiers of chaotic advection
,” e-print arXiv:1403.2953.
2.
H.
Aref
, “
The development of chaotic advection
,”
Phys. Fluids
14
,
1315
(
2002
).
3.
J. M.
Ottino
and
S.
Wiggins
, “
Introduction: Mixing in microfluidics
,”
Philos. Trans. R. Soc. London A
362
,
924
(
2004
).
4.
J. M.
Ottino
and
S.
Wiggins
, “
Designing optimal micromixers
,”
Science
305
,
485
(
2004
).
5.
S.
Wiggins
and
J. M.
Ottino
, “
Foundations of chaotic mixing
,”
Philos. Trans. R. Soc. London A
362
,
937
(
2004
).
6.
W. R.
Dean
, “
XVI. Note on the motion of fluid in a curved pipe
,”
Philos. Mag.
7
,
208
(
1927
).
7.
H. G.
Cuming
, “
The secondary flow in curved pipes
,”
Aeronaut. Res. Counc. Reports Memo.
2880
(
1952
).
8.
R.
Sturman
,
J. M.
Ottino
, and
S.
Wiggins
,
The Mathematical Foundations of Mixing
(
Cambridge University Press
,
2006
), p.
281
.
9.
J. M.
Ottino
, “
Mixing, chaotic advection, and turbulence
,”
Annu. Rev. Fluid Mech.
22
,
207
(
1990
).
10.
D. V.
Khakhar
,
J. G.
Franjione
, and
J. M.
Ottino
, “
A case study of chaotic mixing in deterministic flows: The partitioned pipe mixer
,”
Chem. Eng. Sci.
42
,
2909
(
1987
).
11.
H.
Aref
, “
Chaotic advection by laminar flow in a twisted pipe
,”
J. Fluid Mech.
209
,
335
(
1989
).
12.
A. D.
Stroock
and
G. J.
McGraw
, “
Investigation of the staggered herringbone mixer with a simple analytical model
,”
Philos. Trans. R. Soc. London A
362
,
971
(
2004
).
13.
S.
Qian
and
H. H.
Bau
, “
A chaotic electroosmotic stirrer
,”
Anal. Chem.
74
,
3616
(
2002
).
14.
R. H.
Liu
,
M. A.
Stremler
,
K. V.
Sharp
,
M. G.
Olsen
,
J. G.
Santiago
,
R. J.
Adrian
,
H.
Aref
, and
D. J.
Beebe
, “
Passive mixing in a three-dimensional serpentine microchannel
,”
J. Microelectromech. Syst.
9
,
190
(
2000
).
15.
T. G.
Kang
,
M. K.
Singh
,
P. D.
Anderson
, and
H. E. H.
Meijer
, “
A chaotic serpentine mixer efficient in the creeping flow regime: From design concept to optimization
,”
Microfluid. Nanofluid.
7
,
783
(
2009
).
16.
J. M.
Park
,
D. S.
Kim
,
T. G.
Kang
, and
T. H.
Kwon
, “
Improved serpentine laminating micromixer with enhanced local advection
,”
Microfluid. Nanofluid.
4
,
513
(
2007
).
17.
F.
Jiang
,
K.
Drese
,
S.
Hardt
,
M.
Kupper
, and
F.
Schönfeld
, “
Helical flows and chaotic mixing in curved micro channels
,”
AIChE J.
50
,
2297
(
2004
).
18.
A. P.
Sudarsan
and
V. M.
Ugaz
, “
Fluid mixing in planar spiral microchannels
,”
Lab Chip
6
,
74
(
2006
).
19.
H.
Chen
and
J.-C.
Meiners
, “
Topologic mixing on a microfluidic chip
,”
Appl. Phys. Lett.
84
,
2193
(
2004
).
20.
C.
Castelain
,
A.
Mokrani
,
Y.
Le Guer
, and
H.
Peerhossaini
, “
Experimental study of chaotic advection regime in a twisted duct flow
,”
Eur. J. Mech. B-Fluids
20
,
205
(
2001
).
21.
A. D.
Stroock
,
S. K. W.
Dertinger
,
A.
Ajdari
,
I.
Mezic
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Chaotic mixer for microchannels
,”
Science
295
,
647
(
2002
).
22.
M.
Horner
,
G.
Metcalfe
,
S.
Wiggins
, and
J. M.
Ottino
, “
Transport enhancement mechanisms in open cavities
,”
J. Fluid Mech.
452
,
199
(
2002
).
23.
P.
Garg
,
J. R.
Picardo
, and
S.
Pushpavanam
, “
Vertically stratified two-phase flow in a curved channel: Insights from a domain perturbation analysis
,”
Phys. Fluids
26
,
073604
(
2014
).
24.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
,
Handbook of Experimental Fluid Dynamics
(
Springer
,
New-York
,
2007
), pp.
1219
1240
.
25.
E.
Lauga
and
H. A.
Stone
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
(
2003
).
26.
J.
Ou
,
B.
Perot
, and
J. P.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
(
2007
).
27.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
(
2010
).
28.
L.
Bocquet
and
E.
Lauga
, “
A smooth future?
,”
Nat. Mater.
10
,
334
(
2011
).
29.
G.
Daschiel
,
M.
Perić
,
J.
Jovanović
, and
A.
Delgado
, “
The holy grail of microfluidics: Sub-laminar drag by layout of periodically embedded microgrooves
,”
Microfluid. Nanofluid.
15
,
675
(
2013
).
30.
A.
Busse
,
N. D.
Sandham
,
G.
Mchale
, and
M. I.
Newton
, “
Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface
,”
J. Fluid Mech.
727
,
488
(
2013
).
31.
M.
Funakoshi
, “
Chaotic mixing and mixing efficiency in a short time
,”
Fluid Dyn. Res.
40
,
1
(
2008
).
32.
R.
Sturman
and
S.
Wiggins
, “
Eulerian indicators for predicting and optimizing mixing quality
,”
New J. Phys.
11
,
075031
(
2009
).
33.
L. S.
Yao
and
S. A.
Berger
, “
Entry flow in a curved pipe
,”
J. Fluid Mech.
67
,
177
(
1975
).
34.
T.
Ahmad
and
I.
Hassan
, “
Experimental analysis of microchannel entrance length characteristics using microparticle image velocimetry
,”
J. Fluids Eng.
132
,
041102
(
2010
).
35.
K. L.
McIlhany
and
S.
Wiggins
, “
Optimizing mixing in channel flows: Kinematic aspects associated with secondary flows in the cross-section
,”
Microfluid. Nanofluid.
10
,
249
(
2010
).
36.
J. D.
Meiss
, “
Symplectic maps, variational principles and transport
,”
Rev. Mod. Phys.
64
,
795
(
1992
).
37.
R. S.
Mackay
,
J. D.
Meissi
, and
I. C.
Percival
, “
Transport in Hamiltonian systems
,”
Phys. D
13
,
55
(
1984
).
38.
V.
Rom-Kedar
and
S.
Wiggins
, “
Transport in two-dimensional maps
,”
Arch. Ration. Mech. Anal.
109
,
239
(
1990
).
39.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
, 2nd ed. (
Springer-Verlag
,
New York
,
1992
).
40.
J. G.
Franjione
and
J. M.
Ottino
, “
Symmetry concepts for the geometric analysis of mixing flows
,”
Proc. R. Soc., A
338
,
301
(
1992
).
41.
K. L.
McIlhany
,
D.
Mott
,
E.
Oran
, and
S.
Wiggins
, “
Optimizing mixing in lid-driven flow designs through predictions from Eulerian indicators
,”
Phys. Fluids
23
,
082005
(
2011
).
42.
K. L.
McIlhany
and
S.
Wiggins
, “
Eulerian indicators under continuously varying conditions
,”
Phys. Fluids
24
,
073601
(
2012
).
43.
P. V
Danckwerts
, “
The definition and measurement of some characteristics of mixtures
,”
Appl. Sci. Res.
3
,
279
(
1952
).
44.
M.
Van Dyke
,
Perturbation Methods in Fluid Mechanics
(
The Parabolic Press
,
Stanford, California
,
1975
).
45.
L. G.
Leal
,
Advanced Transport Phenomena
(
Cambridge University Press
,
2007
).
46.
D.
Ramkrishna
and
N.
Amundson
,
Linear Operator Methods in Chemical Engineering with Applications to Transport and Chemical Reaction Systems
(
Prentice Hall
,
New Jersey
,
1985
).
47.
V. V
Meleshko
, “
Biharmonic problem in a rectangle
,”
Appl. Sci. Res.
58
,
217
(
1998
).
You do not currently have access to this content.