We consider self-diffusiophoresis of axisymmetric particles using the continuum description of Golestanian et al. [“Designing phoretic micro-and nano-swimmers,” New J. Phys. 9, 126 (2007)], where the chemical reaction at the particle boundary is modelled by a prescribed distribution of solute absorption and the interaction of solute molecules with that boundary is represented by diffusio-osmotic slip. With a view towards modelling of needle-like particle shapes, commonly employed in experiments, the self-propulsion problem is analyzed using slender-body theory. For a particle of length 2L, whose boundary is specified by the axial distribution κ(z) of cross-sectional radius, we obtain the approximation μ 2 D L L L j ( z ) d κ ( z ) d z d z for the particle velocity, wherein j(z) is the solute-flux distribution, μ the diffusio-osmotic slip coefficient, and D the solute diffusivity. This approximation can accommodate discontinuous flux distributions, which are commonly used for describing bimetallic particles; it agrees strikingly well with the numerical calculations of Popescu et al. [“Phoretic motion of spheroidal particles due to self-generated solute gradients,” Eur. Phys. J. E: Soft Matter Biol. Phys. 31, 351–367 (2010)], performed for spheroidal particles.

1.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. S.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
13431
(
2004
).
2.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Propulsion of a molecular machine by asymmetric distribution of reaction products
,”
Phys. Rev. Lett.
94
,
220801
(
2005
).
3.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Designing phoretic micro-and nano-swimmers
,”
New J. Phys.
9
,
126
(
2007
).
4.
S. J.
Ebbens
and
J. R.
Howse
, “
Direct observation of the direction of motion for spherical catalytic swimmers
,”
Langmuir
27
,
12293
12296
(
2011
).
5.
S.
Ebbens
,
M.-H.
Tu
,
J. R.
Howse
, and
R.
Golestanian
, “
Size dependence of the propulsion velocity for catalytic janus-sphere swimmers
,”
Phys. Rev. E
85
,
020401
(
2012
).
6.
J. L.
Anderson
,
M. E.
Lowell
, and
D. C.
Prieve
, “
Motion of a particle generated by chemical gradients. Part 1. Non-electrolytes
,”
J. Fluid Mech.
117
,
107
121
(
1982
).
7.
U. M.
Córdova-Figueroa
and
J. F.
Brady
, “
Osmotic propulsion: The osmotic motor
,”
Phys. Rev. Lett.
100
,
158303
(
2008
).
8.
J. F.
Brady
, “
Particle motion driven by solute gradients with application to autonomous motion: Continuum and colloidal perspectives
,”
J. Fluid Mech.
667
,
216
259
(
2011
).
9.
U. M.
Córdova-Figueroa
,
J. F.
Brady
, and
S.
Shklyaev
, “
Osmotic propulsion of colloidal particles via constant surface flux
,”
Soft Matter
9
,
6382
6390
(
2013
).
10.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
, “
Motility of catalytic nanoparticles through self-generated forces
,”
Chem. - Eur. J.
11
,
6462
(
2005
).
11.
G. A.
Ozin
,
I.
Manners
,
S.
Fournier-Bidoz
, and
A.
Arsenault
, “
Dream nanomachines
,”
Adv. Mater.
17
,
3011
3018
(
2005
).
12.
S.
Fournier-Bidoz
,
A. C.
Arsenault
,
I.
Manners
, and
G. A.
Ozin
, “
Synthetic self-propelled nanorotors
,”
Chem. Commun.
2005
,
441
443
.
13.
M. N.
Popescu
,
S.
Dietrich
,
M.
Tasinkevych
, and
J.
Ralston
, “
Phoretic motion of spheroidal particles due to self-generated solute gradients
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
31
,
351
367
(
2010
).
14.
E.
Yariv
, “
Electrokinetic self-propulsion by inhomogeneous surface kinetics
,”
Proc. R. Soc. A
467
,
1645
(
2011
).
15.
E.
Yariv
and
S.
Michelin
, “
Phoretic self-propulsion at large Péclet numbers
,”
J. Fluid Mech.
768
,
R1
(
2015
).
16.
R. G.
Cox
, “
The motion of long slender bodies in a viscous fluid. Part 1. General theory
,”
J. Fluid Mech.
44
,
791
810
(
1970
).
17.
G. K.
Batchelor
, “
Slender-body theory for particles of arbitrary cross-section in Stokes flow
,”
J. Fluid Mech.
44
,
419
441
(
1970
).
18.
E. J.
Hinch
,
Perturbation Methods
(
Cambridge University Press
,
Cambridge
,
1991
).
19.
S.
Michelin
and
E.
Lauga
, “
Phoretic self-propulsion at finite Péclet numbers
,”
J. Fluid Mech.
747
,
572
604
(
2014
).
20.
G. K.
Batchelor
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
21.
S.
Shklyaev
,
J. F.
Brady
, and
U. M.
Córdova-Figueroa
, “
Non-spherical osmotic motor: Chemical sailing
,”
J. Fluid Mech.
748
,
488
520
(
2014
).
You do not currently have access to this content.