The effect of advance ratio on the flow structures above a rotor blade in dynamic-stall is studied using stereoscopic particle image velocimetry. The dynamic-stall vortex shows a significant velocity component in its core, implying a helical structure progressing radially outboard. In addition, a dual-vortical structure was observed at inboard locations only at high advance ratios. The radial velocity attenuates at outboard locations, in contrast to the expected increase with centripetal acceleration. This attenuation is accompanied by an increase in unsteadiness of the vortex. The unsteadiness shows a low-frequency cycle-to-cycle variation despite steady freestream conditions and phase-locked blade tracking. Proper orthogonal decomposition analysis of the dominant flow mode confirms the unsteady behavior of the leading-edge vortex. The dependence on advance ratio is used to relate the unsteadiness of the dynamic-stall vortex to Coriolis effects.

1.
W.
Dickson
and
M.
Dickinson
, “
The effect of advance ratio on the aerodynamics of revolving wings
,”
J. Exp. Biol.
207
,
4269
4281
(
2004
).
2.
D.
Lentink
and
M.
Dickinson
, “
Rotational accelerations stabilize leading edge vortices on revolving fly wings
,”
J. Exp. Biol.
212
,
2705
2719
(
2009
).
3.
K.
Mulleners
,
K.
Kindler
, and
M.
Raffel
, “
Dynamic stall on a fully equipped helicopter model
,”
Aerosp. Sci. Technol.
19
,
72
76
(
2012
).
4.
F.
De Gregorio
,
K.
Pengel
, and
K.
Kindler
, “
A comprehensive PIV measurement campaign on a fully equipped helicopter model
,”
Exp. Fluids
53
,
37
49
(
2012
).
5.
V.
Raghav
and
N.
Komerath
, “
Velocity measurements on a retreating blade in dynamic stall
,”
Exp. Fluids
55
(
2
),
1
10
(
2014
).
6.
J.
Tangler
, “
Insight into wind turbine stall and post-stall aerodynamics
,”
Wind Energy
7
,
247
260
(
2004
).
7.
C. S.
Ferreira
,
G.
van Kuik
,
G.
van Bussel
, and
F.
Scarano
, “
Visualization by PIV of dynamic stall on a vertical axis wind turbine
,”
Exp. Fluids
46
,
97
108
(
2009
).
8.
H.
Lee
and
Y.
Wu
, “
An experimental study of stall delay on the blade of a horizontal-axis wind turbine using tomographic particle image velocimetry
,”
J. Wind Eng. Ind. Aerodyn.
123
,
56
68
(
2013
).
9.
C.
Ellington
,
C.
Van Den Berg
,
A.
Willmott
, and
A.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
,
626
630
(
1996
).
10.
J.
Birch
and
M.
Dickinson
, “
Spanwise flow and the attachment of the leading-edge vortex on insect wings
,”
Nature
412
,
729
733
(
2001
).
11.
J.
Birch
,
W.
Dickson
, and
M.
Dickinson
, “
Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers
,”
J. Exp. Biol.
207
,
1063
1072
(
2004
).
12.
C.
Ozen
and
D.
Rockwell
, “
Three-dimensional vortex structure on a rotating wing
,”
J. Fluid Mech.
707
,
541
(
2012
).
13.
R.
Harbig
,
J.
Sheridan
, and
M.
Thompson
, “
Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms
,”
J. Fluid Mech.
717
,
166
192
(
2013
).
14.
V.
Raghav
and
N.
Komerath
, “
An exploration of radial flow on a rotating blade in retreating blade stall
,”
J. Am. Helicopter Soc.
58
,
1
10
(
2013
).
15.
F.
Caradonna
and
C.
Tung
, “
Experimental and analytical studies of a model helicopter rotor in hover
,” in
NASA Technical Memorandum 81232
(
NASA
,
1981
).
16.
G.
Srinivasan
,
V.
Raghavan
,
E.
Duque
, and
W.
McCroskey
, “
Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method
,”
J. Am. Helicopter Soc.
38
,
3
13
(
1993
).
17.
M.
Raffel
,
H.
Richard
,
K.
Ehrenfried
,
B.
Van der Wall
,
C.
Burley
,
P.
Beaumier
,
K.
McAlister
, and
K.
Pengel
, “
Recording and evaluation methods of PIV investigations on a helicopter rotor model
,”
Exp. Fluids
36
,
146
156
(
2004
).
18.
M.
Bross
,
C.
Ozen
, and
D.
Rockwell
, “
Flow structure on a rotating wing: Effect of steady incident flow
,”
Phys. Fluids
25
,
081901
(
2013
).
19.
R.
Harbig
,
J.
Sheridan
, and
M.
Thompson
, “
The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight
,”
J. Fluid Mech.
751
,
71
105
(
2014
).
20.
W.
Johnson
,
Helicopter Theory
(
Courier Dover Publications
,
2012
).
21.
J.
DiOttavio
,
K.
Watson
,
J.
Cormey
,
N.
Komerath
, and
S.
Kondor
, “
Discrete structures in the radial flow over a rotor blade in dynamic stall
,”
AIAA Paper 2008-7344
,
2008
.
22.
M.
Raffel
,
C.
Willert
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
(
Springer
,
1998
).
23.
N.
Lawson
and
J.
Wu
, “
Three-dimensional particle image velocimetry: Experimental error analysis of a digital angular stereoscopic system
,”
Meas. Sci. Technol.
8
,
1455
(
1997
).
24.
L.
Graftieaux
,
M.
Michard
, and
N.
Grosjean
, “
Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows
,”
Meas. Sci. Technol.
12
,
1422
(
2001
).
25.
Y.
Lu
,
G.
Shen
, and
G.
Lai
, “
Dual leading-edge vortices on flapping wings
,”
J. Exp. Biol.
209
,
5005
5016
(
2006
).
26.
V.
Kármán
, “
Über laminare und turbulente reibung
,”
J. Appl. Math. Mech.
1
,
233
252
(
1921
).
27.
N.
Aubry
,
R.
Guyonnet
, and
R.
Lima
, “
Spatiotemporal analysis of complex signals: Theory and applications
,”
J. Stat. Phys.
64
,
683
739
(
1991
).
28.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I-coherent structures. II-symmetries and transformations. III-dynamics and scaling
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4906803 for videos that show examples of sensitivity of the angle of separated shear layer to the height of the center of vortex 1.
30.
L. W.
Carr
, “
Progress in analysis and prediction of dynamic stall
,”
J. Aircr.
25
,
6
17
(
1988
).
31.
P.
Wernert
,
W.
Geissler
,
M.
Raffel
, and
J.
Kompenhans
, “
Experimental and numerical investigations of dynamic stall on a pitching airfoil
,”
AIAA J.
34
,
982
989
(
1996
).
32.
D.
Rival
and
C.
Tropea
, “
Characteristics of pitching and plunging airfoils under dynamic-stall conditions
,”
J. Aircr.
47
,
80
86
(
2010
).
33.
H.
Beem
,
D.
Rival
, and
M.
Triantafyllou
, “
On the stabilization of leading-edge vortices with spanwise flow
,”
Exp. Fluids
52
,
511
517
(
2012
).
34.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
2000
).

Supplementary Material

You do not currently have access to this content.