A new approach for wall modeling in Large-Eddy-Simulations (LES) is proposed and tested in various applications. To properly include near-wall physics while preserving the basic economy of equilibrium-type wall models, we adopt the classical integral method of von Karman and Pohlhausen (VKP). A velocity profile with various parameters is proposed as an alternative to numerical integration of the boundary layer equations in the near-wall zone. The profile contains a viscous or roughness sublayer and a logarithmic layer with an additional linear term that can account for inertial and pressure gradient effects. Similar to the VKP method, the assumed velocity profile coefficients are determined from appropriate matching conditions and physical constraints. The proposed integral wall-modeled LES (iWMLES) method is tested in the context of a pseudo-spectral code for fully developed channel flow with a dynamic Lagrangian subgrid model as well as in a finite-difference LES code including the immersed boundary method and the dynamic Vreman eddy-viscosity model. Test cases include a fully developed half-channel at various Reynolds numbers, a fully developed channel flow with unresolved roughness, a standard developing turbulent boundary layer flows over smooth plates at various Reynolds numbers, over plates with unresolved roughness, and a case with resolved roughness elements consisting of an array of wall-mounted cubes. The comparisons with data show that the proposed iWMLES method provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to existing zonal or hybrid wall models. A sample application to flow over a surface with truncated cones (representing idealized barnacle-like roughness elements) is also presented, which illustrates effects of subgrid scale roughness when combined with resolved roughness elements.

1.
D. K.
Chapman
, “
Computational aerodynamics development and outlook
,”
AIAA J.
17
,
1293
(
1979
).
2.
U.
Piomelli
, “
Wall-layer models for large-eddy simulations
,”
Prog. Aerosp. Sci.
44
,
437
(
2008
).
3.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
(
2002
).
4.
U.
Piomelli
,
J.
Ferziger
,
P.
Moin
, and
J.
Kim
, “
New approximate boundary conditions for large eddy simulations of wall-bounded flows
,”
Phys. Fluids A
1
,
1061
(
1989
).
5.
I.
Marusic
,
G. J.
Kunkel
, and
F.
Porte-Agel
, “
Experimental study of wall boundary conditions for large-eddy simulation
,”
J. Fluid Mech.
446
,
309
(
2001
).
6.
J. W.
Deardorff
, “
Numerical investigation of neutral and unstable planetary boundary layers
,”
J. Atmos. Sci.
29
,
91
(
1972
).
7.
C.-H.
Moeng
, “
A large-eddy-simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
,
2052
(
1984
).
8.
P. J.
Mason
and
D.
Thomson
, “
Stochastic backscatter in large-eddy simulations of boundary layers
,”
J. Fluid Mech.
242
,
51
(
1992
).
9.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
(
2000
).
10.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
11.
W.
Anderson
and
C.
Meneveau
, “
Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces
,”
J. Fluid Mech.
679
,
288
(
2011
).
12.
E.
Balaras
and
C.
Benocci
, “
Subgrid-scale models in finite-difference simulations of complex wall bounded flows
,”
AGARD CP
551
,
2
(
1994
), available at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA292121#page=25.
13.
E.
Balaras
,
C.
Benocci
, and
U.
Piomelli
, “
Two-layer approximate boundary conditions for large-eddy simulations
,”
AIAA J.
34
,
1111
(
1996
).
14.
L.
Temmerman
,
M.
Hadziabdic
,
M.
Leschziner
, and
K.
Hanjalic
, “
A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers
,”
Int. J. Heat Fluid Flow
26
,
173
(
2005
).
15.
S.
Kawai
and
J.
Larsson
, “
Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy
,”
Phys. Fluids
24
,
015105
(
2012
).
16.
S.
Kawai
and
J.
Larsson
, “
Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers
,”
Phys. Fluids
25
,
015105
(
2013
).
17.
A. R.
Kerstein
,
W. T.
Ashurst
,
S.
Wunsch
, and
V.
Nilsen
, “
One-dimensional turbulence: Vector formulation and application to free shear flows
,”
J. Fluid Mech.
447
,
85
(
2001
).
18.
A. R.
Kerstein
, “
One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows
,”
J. Fluid Mech.
392
,
277
(
1999
).
19.
T. M.
Smith
and
S.
Menon
, “
One-dimensional simulations of freely propagating turbulent premixed flames
,”
Combust. Sci. Technol.
128
,
99
(
1997
).
20.
A. G.
Gungor
and
S.
Menon
, “
A new two-scale model for large eddy simulation of wall-bounded flows
,”
Prog. Aerosp. Sci.
46
,
28
(
2010
).
21.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
,
181
(
2009
).
22.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows
(
Springer
,
2002
).
23.
F.
Nicoud
,
J.
Baggett
,
P.
Moin
, and
W.
Cabot
, “
Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation
,”
Phys. Fluids
13
,
2968
(
2001
).
24.
M.
Milano
and
P.
Koumoutsakos
, “
Neural network modeling for near wall turbulent flow
,”
J. Comput. Phys.
182
,
1
(
2002
).
25.
S.
Bose
and
P.
Moin
, “
A dynamic slip boundary condition for wall-modeled large-eddy simulation
,”
Phys. Fluids
26
,
015104
(
2014
).
26.
U.
Piomelli
,
E.
Balaras
,
H.
Pasinato
,
K. D.
Squires
, and
P. R.
Spalart
, “
The inner–outer layer interface in large-eddy simulations with wall-layer models
,”
Int. J. Heat Fluid Flow
24
,
538
(
2003
).
27.
G.
Elsinga
and
I.
Marusic
, “
Universal aspects of small-scale motions in turbulence
,”
J. Fluid Mech.
662
,
514
(
2010
).
28.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
Predictive model for wall-bounded turbulent flow
,”
Science
329
,
193
(
2010
).
29.
D.
Chung
and
D.
Pullin
, “
Large-eddy simulation and wall modelling of turbulent channel flow
,”
J. Fluid Mech.
631
,
281
(
2009
).
30.
M.
Inoue
and
D.
Pullin
, “
Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to re θ= o (1012)
,”
J. Fluid Mech.
686
,
507
(
2011
).
31.
N.
Saito
,
D. I.
Pullin
, and
I.
Michio
, “
Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow
,”
Phys. Fluids
24
,
075103
(
2012
).
32.
M.
Inoue
,
D.
Pullin
,
Z.
Harun
, and
I.
Marusic
, “
Les of the adverse-pressure gradient turbulent boundary layer
,”
Int. J. Heat Fluid Flow
44
,
293
(
2013
).
33.
N.
Saito
and
D. I.
Pullin
, “
Large eddy simulation of smooth–rough–smooth transitions in turbulent channel flows
,”
Int. J. Heat Mass Trans.
78
,
707
(
2014
).
34.
A.
Misra
and
D. I.
Pullin
, “
A vortex-based subgrid stress model for large-eddy simulation
,”
Phys. Fluids
9
,
2443
(
1997
).
35.
R. L.
Panton
,
Incompressible Flow
(
John Wiley & Sons
,
2013
).
36.
Y.
Shi
,
Z.
Xiao
, and
S.
Chen
, “
Constrained subgrid-scale stress model for large eddy simulation
,”
Phys. Fluids
20
,
011701
(
2008
).
37.
R. H.
Shaw
and
U.
Schumann
, “
Large-eddy simulation of turbulent flow above and within a forest
,”
Boundary-Layer Meteorol.
61
,
47
(
1992
).
38.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
39.
H.
Schlichting
,
Boundary-Layer Theory
(
McGraw-Hill
,
1968
).
40.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
41.
C.
Meneveau
,
T. S.
Lund
, and
W. H.
Cabot
, “
A lagrangian dynamic subgrid-scale model of turbulence
,”
J. Fluid Mech.
319
,
353
(
1996
).
42.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
F.
Najjar
,
A.
Vargas
, and
A.
von Loebbecke
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
,
4825
(
2008
).
43.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
44.
M.
Calaf
,
M. B.
Parlange
, and
C.
Meneveau
, “
Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers
,”
Phys. Fluids
23
,
126603
(
2011
).
45.
W.
Anderson
and
C.
Meneveau
, “
A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements
,”
Boundary-Layer Meteorol.
137
,
397
(
2010
).
46.
W.
Anderson
,
P.
Passalacqua
,
F.
Porté-Agel
, and
C.
Meneveau
, “
Large-eddy simulation of atmospheric boundary-layer flow over fluvial-like landscapes using a dynamic roughness model
,”
Boundary-Layer Meteorol.
144
,
263
(
2012
).
47.
D.
You
and
P.
Moin
, “
A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries
,”
Phys. Fluids
19
,
065110
(
2007
).
48.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. comput. phys.
140
,
233
(
1998
).
49.
E.
Meinders
and
K.
Hanjalić
, “
Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes
,”
Int. J. Heat Fluid Flow
20
,
255
(
1999
).
50.
D.
Poggi
,
A.
Porporato
,
L.
Ridolfi
,
J.
Albertson
, and
G.
Katul
, “
The effect of vegetation density on canopy sub-layer turbulence
,”
Boundary-Layer Meteorol.
111
,
565
(
2004
).
You do not currently have access to this content.