Mechanisms behind the pressure distribution and skin friction within a laminar separation bubble (LSB) are investigated by large-eddy simulations around a 5% thickness blunt flat plate at the chord length based Reynolds number 5.0 × 103, 6.1 × 103, 1.1 × 104, and 2.0 × 104. The characteristics inside the LSB change with the Reynolds number; a steady laminar separation bubble (LSB_S) at the Reynolds number 5.0 × 103 and 6.1 × 103, and a steady-fluctuating laminar separation bubble (LSB_SF) at the Reynolds number 1.1 × 104, and 2.0 × 104. Different characteristics of pressure and skin friction distributions are observed by increasing the Reynolds number, such that a gradual monotonous pressure recovery in the LSB_S and a plateau pressure distribution followed by a rapid pressure recovery region in the LSB_SF. The reasons behind the different characteristics of pressure distributions at different Reynolds numbers are discussed by deriving the Reynolds averaged pressure gradient equation. It is confirmed that the viscous stress distributions near the surface play an important role in determining the formation of different pressure distributions. Depending on the Reynolds numbers, the viscous stress distributions near the surface are affected by the development of a separated laminar shear layer or the Reynolds shear stress. In addition, we show that the same analyses can be applied to the flows around a NACA0012 airfoil.

1.
B.
Carmichael
, “Low Reynolds number airfoil survey,” Report No. NASA-CR-165803, NASA, 1982.
2.
I.
Tani
, “
Low speed flows involving bubble separations
,”
Prog. Aerosp. Sci.
5
,
70
103
(
1964
).
3.
M.
Gaster
, “
The structure and behaviour of laminar separation bubbles
,”
AGARD CP-4,
813
854
(
1966
).
4.
H. P.
Horton
, “
Laminar separation bubbles in two- and three-dimensional incompressible flow
,” Ph.D. dissertation (
University of London
,
1968
).
5.
P. B. S.
Lissaman
, “
Low-Reynolds-number airfoils
,”
Annu. Rev. Fluid Mech.
15
,
223
240
(
1983
).
6.
T. J.
Mueller
and
S. M.
Batillt
, “
Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers
,”
AIAA J.
20
,
457
463
(
1982
).
7.
H.
Shan
,
L.
Jiang
, and
C.
Liu
, “
Direct numerical simulation of flow separation around a NACA0012 airfoil
,”
Comput. Fluids
34
,
1096
1114
(
2005
).
8.
R.
Kojima
,
T.
Nonomura
,
A.
Oyama
, and
K.
Fujii
, “
Large-eddy simulation of low-Reynolds-number flow over thick and thin NACA airfoils
,”
J. Aircraft
50
,
187
196
(
2013
).
9.
K.
Sasaki
and
M.
Kiya
, “
Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers
,”
J. Fluids Eng.
113
,
405
410
(
1991
).
10.
R.
Hain
,
C. J.
Kähler
, and
R.
Radespiel
, “
Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils
,”
J. Fluid Mech.
630
,
129
(
2009
).
11.
L. L.
Pauley
,
P.
Moin
, and
W. C.
Reynolds
, “
The structure of two-dimensional separation
,”
J. Fluid Mech.
220
,
397
411
(
1990
).
12.
M.
Alam
and
N.
Sandham
, “
Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment
,”
J. Fluid Mech.
403
,
223
250
(
2000
).
13.
P. R.
Spalart
and
M. K.
Strelets
, “
Mechanisms of transition and heat transfer in a separation bubble
,”
J. Fluid Mech.
403
,
329
349
(
2000
).
14.
M. M.
O’Meara
and
T. J.
Mueller
, “
Laminar separation bubble characteristics on an airfoil at low Reynolds numbers
,”
AIAA J.
25
,
1033
1041
(
1987
).
15.
S. S.
Diwan
and
O. N.
Ramesh
, “
Laminar separation bubbles: Dynamics and control
,”
Sadhana
32
,
103
109
(
2007
).
16.
W.
Shyy
,
Y.
Lian
,
J.
Tang
,
D.
Viieru
, and
H.
Liu
,
Aerodynamics of Low Reynolds Number Flyers
(
Cambride University Press
,
New York
,
2008
).
17.
Y.
Zhou
and
Z. J.
Wang
, “Effects of surface roughness on laminar separation bubble over a wing at a low-Reynolds number,” AIAA Paper No. 2011-0736, 2011.
18.
A. V.
Arena
and
T. J.
Mueller
, “
Laminar separation, transition, and turbulent rettachment near the leading edge of airfoils
,”
AIAA J.
18
,
747
753
(
1980
).
19.
W. B.
Roberts
, “
Calculation of laminar separation bubbles and their effect on airfoil performance
,”
AIAA J.
18
,
25
31
(
1980
).
20.
J. H.
Watmuff
, “
Evolution of a wave packet into vortex loops in a laminar separation bubble
,”
J. Fluid Mech.
397
,
119
169
(
1999
).
21.
L. E.
Jones
,
R. D.
Sandberg
, and
N. D.
Sandham
, “
Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence
,”
J. Fluid Mech.
602
,
175
207
(
2008
).
22.
M. D.
Ripley
and
L. L.
Pauley
, “
The unsteady structure of twodimensional steady Laminar separation
,”
Phys. Fluids
5
,
3099
3106
(
1993
).
23.
J. C.
Muti Lin
and
L. L.
Pauley
, “
Low-Reyonlds-number separation on an airfoil
,”
AIAA J.
34
,
1570
1577
(
1996
).
24.
S.
Yarusevych
,
P. E.
Sullivan
, and
J. G.
Kawall
, “
Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers
,”
Phys. Fluid
18
,
044101
(
2006
).
25.
H.
Hu
and
Z.
Yang
, “
An experimental study of the laminar flow separation on a low Reynolds-number airfoil
,”
J. Fluid Eng.
130
,
051101
(
2008
).
26.
O.
Marxen
and
D. S.
Henningson
, “
The effect of small-amplitude convective distrubances on the size and bursting of a laminar separation bubble
,”
J. Fluid Mech.
671
,
1
33
(
2011
).
27.
J. N. N.
Counsil
and
K. G.
Boulama
, “
Low-Reynolds-number aerodynamic performances of the NACA0012 and Selig-Donovan 7003 airfoils
,”
J. Aircraft
50
,
204
216
(
2013
).
28.
I.
Karasu
,
M. S.
Genç
, and
H. H.
Açikel
, “
Numerical study on low Reynolds number flows over an Aerofoil
,”
J. Appl. Mech. Eng.
2
,
131
(
2013
).
29.
M.
Anyoji
,
T.
Nonomura
,
H.
Aono
,
A.
Oyama
,
K.
Fujii
,
H.
Nagai
, and
K.
Asai
, “
Computational and experimental analysis of a high-performance airfoil under low-Reynolds-number flow condition
,”
J. Aircraft
51
,
1864
1872
(
2014
).
30.
M.
Anyoji
,
K.
Nose
,
S.
Ida
,
D.
Numata
,
H.
Nagai
, and
K.
Asai
, “Aerodynamic measurements in the Mars wind tunnel at Tohoku university,” AIAA Paper No. 2011-0852, 2011.
31.
I.
Tani
,
M.
Iuchi
, and
H.
Komoda
, “Experimental investigation of flow separation associated with a step or a groove,” Report No. 361, Aeronautical Research Institute, 1961.
32.
AIAA Standard, “Assessment of experimental uncertainty with application to wind tunnel testing,” AIAA Paper No. S-017A-1999, 1999.
33.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
34.
D. V.
Gaitonde
and
M. R.
Visbal
, “
Pade-type higher-order boundary filters for the Navier–Stokes equations
,”
AIAA J.
38
,
2103
2112
(
2000
).
35.
Y.
Abe
,
N.
Iizuka
,
T.
Nonomura
, and
K.
Fujii
, “
Geometric interpretations and spatial symmetry property of metrics in the conservative form for high-order finite-difference schemes on moving and deforming grids
,”
J. Comput. Phys.
260
,
163
203
(
2013
).
36.
S.
Obayashi
,
K.
Fujii
, and
S.
Gavali
, “Navier-Stokes simulation of wind-tunnel flow using LU-ADI factorization algorithm,” Report No. NASA TM-100042, NASA, 1988.
37.
N.
Iizuka
, “
Study of Mach number effect on the dynamic stability of a blunt re-entry capsule
,” Ph.D. dissertation (
University of Tokyo
,
2006
).
38.
H.
Nishida
and
T.
Nonomura
, “
ADI-SGS scheme on ideal magnetohydrodynamics
,”
J. Comput. Phys.
228
,
3182
3188
(
2009
).
39.
S. R.
Chakravarthy
, “Relaxation methods for unfactored implicit upwind schemes,” AIAA Paper No. 1984-0165, 1984.
40.
S.
Kawai
,
S. K.
Shankar
, and
S. K.
Lele
, “
Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows
,”
J. Comput. Phys.
229
,
1739
1762
(
2010
).
41.
S.
Kawai
and
K.
Fujii
, “
Compact scheme with filtering for large-eddy simulation of transitional boundary layer
,”
AIAA J.
46
,
690
700
(
2008
).
42.
H.
Choi
and
P.
Moin
, “
Effects of the computational time step on numerical solutions of turbulent flow
,”
J. Comput. Phys.
113
,
1
4
(
1994
).
43.
P.
Dengel
and
H. H.
Fernholz
, “
An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation
,”
J. Fluid Mech.
212
,
615
636
(
1990
).
44.
A. E.
Alving
and
H. H.
Fernholz
, “
Meanvelocity sacling in and around a mild, turbulent separation bubble
,”
Phys. Fluids
7
,
1956
1969
(
1995
).
45.
K.
Suluksan
and
E.
Juntasaro
, “
Assessment of intermittency transport equations for modeling transition in boundary layers subjected to freestream turbulence
,”
Int. J. Heat Fluid Fl.
29
,
48
61
(
2008
).
46.
D.
Lee
,
T.
Nonomura
,
A.
Oyama
, and
K.
Fujii
, “
Comparison of numerical methods evaluating airfoil aerodynamic characteristics at low Reynolds number
,”
J. Aircraft
52
,
296
306
(
2015
).
You do not currently have access to this content.