When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

1.
P.
McIver
, “
Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth
,”
J. Fluid Mech.
201
,
243
257
(
1989
).
2.
R. A.
Ibrahim
,
Liquid Sloshing Dynamics Theory and Applications
(
Cambridge University Press
,
2005
).
3.
B.
Molin
, “
On the piston and sloshing modes in moonpools
,”
J. Fluid Mech.
430
,
27
50
(
2001
).
4.
A.
Herczyński
and
P. D.
Weidman
, “
Experiments on the periodic oscillation of free containers driven by liquid sloshing
,”
J. Fluid Mech.
693
,
216
242
(
2012
).
5.
A.
Royon-Lebeaud
,
E. J.
Hopfinger
, and
A.
Cartellier
, “
Liquid sloshing and wave breaking in circular and square-base cylindrical containers
,”
J. Fluid Mech.
577
,
467
494
(
2012
).
6.
O. M.
Faltinsen
and
A. N.
Timokha
, “
On sloshing modes in a circular tank
,”
J. Fluid Mech.
695
,
467
477
(
2012
).
7.
M. R.
Turner
and
T. J.
Bridges
, “
Nonlinear energy transfer between fluid sloshing and vessel motion
,”
J. Fluid Mech.
719
,
606
636
(
2013
).
8.
B.
Bouscasse
,
A.
Colagrossi
,
A.
Souto-Iglesias
, and
J. L.
Cercos-Pita
, “
Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. i. Theoretical formulation and numerical investigation
,”
Phys. Fluids
26
,
033103
(
2014
).
9.
M.
Reclari
,
M.
Dreyer
,
S.
Tissot
,
D.
Obreschkow
,
F. M.
Wurm
, and
M.
Farhat
, “
Surface wave dynamics in orbital shaken cylindrical containers
,”
Phys. Fluids
26
,
052104
(
2014
).
10.
H. C.
Mayer
and
R.
Krechetnikov
, “
Walking with coffee: Why does it spill?
,”
Phys. Rev. E
85
,
046117
(
2012
).
11.
H.
Bauer
, “
Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover
,”
J. Sound Vib.
180
,
689
704
(
1995
).
12.
H. F.
Bauer
and
M.
Chiba
, “
Viscous oscillations in a circular cylindrical tank with elastic surface cover
,”
J. Sound Vib.
304
,
1
17
(
2007
).
13.
R.
Kidambi
, “
Viscous oscillations in a circular cylinder with an elastic cover on the free surface
,”
J. Eng. Math.
64
,
269
284
(
2009
).
14.
A.
Maleki
and
M.
Ziyaeifar
, “
Sloshing damping in cylindrical liquid storage tanks with baffles
,”
J. Sound Vib.
311
,
372
385
(
2008
).
15.
D.
Liu
and
P.
Lin
, “
Three-dimensional liquid sloshing in a tank with baffles
,”
Ocean Eng.
36
,
202
212
(
2009
).
16.
H. F.
Bauer
,
T.-M.
Hsu
, and
J. T.-S.
Wang
, “
Interaction of a sloshing liquid with elastic containers
,”
J. Fluid Eng.
90
,
373
377
(
1968
).
17.
R.
Prud’homme
,
Foams: Theory: Measurements: Applications, Surfactant Science
(
Taylor & Francis
,
1995
).
18.
P.
Stevenson
,
Foam Engineering: Fundamentals and Applications
(
Wiley
,
2012
).
19.
I.
Cantat
,
N.
Kern
, and
R.
Delannay
, “
Dissipation in foam flowing through narrow channels
,”
Europhys. Lett.
65
,
726
(
2004
).
20.
B.
Dollet
and
F.
Graner
, “
Two-dimensional flow of foam around a circular obstacle: Local measurements of elasticity, plasticity and flow
,”
J. Fluid Mech.
585
,
181
211
(
2007
).
21.
B.
Dollet
, “
Local description of the two-dimensional flow of foam through a contraction
,”
J. Rheol.
54
,
741
760
(
2010
).
22.
I.
Ben Salem
,
I.
Cantat
, and
B.
Dollet
, “
Response of a two-dimensional liquid foam to air injection: Swelling rate, fingering and fracture
,”
J. Fluid Mech.
714
,
258
282
(
2013
).
23.
S.
Cox
,
D.
Weaire
, and
J.
Glazier
, “
The rheology of two-dimensional foams
,”
Rheol. Acta
43
,
442
448
(
2004
).
24.
S.
Cox
, “
A viscous froth model for dry foams in the surface evolver
,”
Colloids Surf., A
263
,
81
89
(
2005
).
25.
F.
Boulogne
and
S. J.
Cox
, “
Elastoplastic flow of a foam around an obstacle
,”
Phys. Rev. E
83
,
041404
(
2011
).
26.
A.
Bronfort
and
H.
Caps
, “
Foams in a rotating drum: An analogy with granular materials
,”
Colloids Surf., A
(published online 2015).
27.
P.
Marmottant
and
F.
Graner
, “
An elastic, plastic, viscous model for slow shear of a liquid foam
,”
Eur. Phys. J. E
23
,
337
347
(
2007
).
28.
S.
Benito
,
C.
Bruneau
,
T.
Colin
,
C.
Gay
, and
F.
Molino
, “
An elasto-visco-plastic model for immortal foams or emulsions
,”
Eur. Phys. J. E
25
,
225
251
(
2008
).
29.
S.
Cohen-Addad
,
R.
Höhler
, and
O.
Pitois
, “
Flow in foams and flowing foams
,”
Annu. Rev. Fluid Mech.
45
,
241
267
(
2013
).
30.
I.
Cantat
,
S.
Cohen-Addad
,
F.
Elias
,
F.
Graner
,
R.
Höhler
,
O.
Pitois
,
F.
Rouyer
, and
A.
Saint-Jalmes
,
Les Mousses: Structure et Dynamique
(
Belin
,
2010
).
31.
R.
Höhler
and
S.
Cohen-Addad
, “
Rheology of liquid foam
,”
J. Phys.: Condens. Matter
17
,
R1041
(
2005
).
32.
F.
Bretherton
, “
The motion of long bubbles in tubes
,”
J. Fluid Mech.
10
,
166
188
(
1961
).
33.
N.
Denkov
,
V.
Subramanian
,
D.
Gurovich
, and
A.
Lips
, “
Wall slip and viscous dissipation in sheared foams: Effect of surface mobility
,”
Colloids Surf., A
263
,
129
145
(
2005
).
34.
A.
Saugey
,
W.
Drenckhan
, and
D.
Weaire
, “
Wall slip of bubbles in foams
,”
Phys. Fluids
18
,
053101
(
2006
).
35.
C.
Raufaste
,
A.
Foulon
, and
B.
Dollet
, “
Dissipation in quasi-two-dimensional flowing foams
,”
Phys. Fluids
21
,
053102
(
2009
).
36.
S.
Costa
,
S.
Cohen-Addad
,
A.
Salonen
, and
R.
Hohler
, “
The dissipative rheology of bubble monolayers
,”
Soft Matter
9
,
886
895
(
2013
).
37.
I.
Cantat
, “
Liquid meniscus friction on a wet plate: Bubbles, lamellae, and foams
,”
Phys. Fluids
25
,
031303
(
2013
).
38.
M.
Le Merrer
,
R.
Lespiat
,
R.
Hohler
, and
S.
Cohen-Addad
, “
Linear and non-linear wall friction of wet foams
,”
Soft Matter
11
,
368
(
2014
).
39.
D.
Langevin
, “
Rheology of adsorbed surfactant monolayers at fluid surfaces
,”
Annu. Rev. Fluid Mech.
46
,
47
65
(
2014
).
40.
M. L.
Sheely
, “
Glycerol viscosity tables
,”
Ind. Eng. Chem.
24
,
1060
1064
(
1932
).
41.
CRC Handbook of Chemistry and Physics
, 89th ed., edited by
D.
Lide
(
Taylor and Francis
,
2008
).
42.
R.
Soller
and
S. A.
Koehler
, “
Rheology of steady-state draining foams
,”
Phys. Rev. Lett.
100
,
208301
(
2008
).
43.
N.
Denkov
,
S.
Tcholakova
,
K.
Golemanov
,
K.
Ananthpadmanabhan
, and
A.
Lips
, “
The role of surfactant type and bubble surface mobility in foam rheology
,”
Soft Matter
5
,
3389
3408
(
2009
).
44.
K. D.
Nguyem Thu Lam
and
H.
Caps
, “
Effect of a capillary meniscus on the Faraday instability threshold
,”
Eur. Phys. J. E
34
,
112
(
2011
).
45.
A.
Bronfort
and
H.
Caps
, “
Faraday instability at foam-water interface
,”
Phys. Rev. E
86
,
066313
(
2012
).
46.
L.
Landau
and
E.
Lifshitz
,
Fluid Mechanics
(
Addison-Wesley
,
1959
).
47.
J.
Cappello
,
A.
Sauret
,
F.
Boulogne
,
E.
Dressaire
, and
H. A.
Stone
, “
Damping of liquid sloshing by foams: From everyday observations to liquid transport
,”
J. Visualization
1
3
(published online 2014).
48.
D.
Weaire
and
T.-L.
Fu
, “
The mechanical behavior of foams and emulsions
,”
J. Rheol.
32
,
271
283
(
1988
).
49.
C.
Planchette
,
E.
Lorenceau
, and
A.-L.
Biance
, “
Surface wave on a particle raft
,”
Soft Matter
8
,
2444
2451
(
2012
).
50.
S.
van der Walt
,
J. L.
Schönberger
,
J.
Nunez-Iglesias
,
F.
Boulogne
,
J. D.
Warner
,
N.
Yager
,
E.
Gouillart
, and
T.
Yu
, “
scikit-image: Image processing in python
,”
PeerJ
2
,
e453
(
2014
).
51.
D. B.
Allan
,
T. A.
Caswell
, and
N. C.
Keim
, Trackpy v0.2, 2014, https://github.com/soft-matter/trackpy.
52.
D.
Quéré
and
A.
De Ryck
, “
Le mouillage dynamique des fibres
,”
Ann. Phys. Fr.
23
,
1
149
(
1998
).
53.
E.
Dressaire
,
R.
Bee
,
D. C.
Bell
,
A.
Lips
, and
H. A.
Stone
, “
Interfacial polygonal nanopatterning of stable microbubbles
,”
Science
320
,
1198
1201
(
2008
).
54.
M.
La Rocca
,
G.
Sciortino
,
C.
Adduce
, and
M. A.
Boniforti
, “
Experimental and theoretical investigation on the sloshing of a two-liquid system with free surface
,”
Phys. Fluids
17
,
062101
(
2005
).
You do not currently have access to this content.